Skip to main content
Log in

Characterization of cobalt- and copper hexacyanoferrate-modified carbon film electrodes for redox-mediated biosensors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cobalt and copper hexacyanoferrate films (CoHCF and CuHCF) were formed at carbon film electrodes by three different one-step processes: cycling the applied potential, application of a constant current, and chemically. All hexacyanoferrate films obtained were characterized electrochemically by cyclic voltammetry and electrochemical impedance spectroscopy. To evaluate their possible use as redox mediators for biosensors, they were applied to the determination of hydrogen peroxide in neutral phosphate buffer saline electrolyte. Chemically deposited CuHCF was found to be generally the most suitable as a mediator, although CoHCF made by potential cycling is the most useful when a very low detection limit is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koncki R (2002) Crit Rev Anal Chem 32:79

    Google Scholar 

  2. Karyakin AA (2001) Electroanalysis 13:813

    Google Scholar 

  3. de Tacconi RN, Rajeshwar K, Lezna RO (2003) Chem Mater 15:3046

    Google Scholar 

  4. Horányi G, Inzelt G, Kulesza PJ (1990) Electrochim Acta 35:811

    Google Scholar 

  5. Kulesza PJ, Galus Z (1992) J Electroanal Chem 323:261

    Google Scholar 

  6. Kulesza PJ, Malik MA, Miecznikowski K, Wolkiewicz A, Zamponi S, Berrettoni M, Marassi R (1996) J Electrochem Soc 143:L10

    Google Scholar 

  7. Malik MA, Horányi G, Kulesza PJ, Inzelt G,Kertész V, Schmidt R, Czirok E (1998) J Electroanal Chem 452:57

    Google Scholar 

  8. Kulesza PJ, Malik MA, Berrettoni M, Giogetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870

    Google Scholar 

  9. Kulesza PJ, Malik MA, Schmidt R, Smolinska A, Miecznikowski K, Zamponi S, Czerwinski A, Berrettoni M, Marassi R (2000) J Electroanal Chem 487:57

    Google Scholar 

  10. Malik MA, Miecznikowski K, Kulesza PJ (2000) Electrochim Acta 45:3777

    Google Scholar 

  11. Cataldi TRI, Centonze D, Guerrieri (1995) Anal Chem 67:101

    Google Scholar 

  12. Cataldi TRI, Guascito R, Salvi AM (1996) J Electroanal Chem 417:83

    Google Scholar 

  13. Cataldi TRI, De Benedetto GE, Bianchini A (1998) J Electroanal Chem 448:111

    Google Scholar 

  14. De Benedetto GE, Guascito MR, Ciriello R, Cataldi TRI (2000) Anal Chim Acta 410:143

    Google Scholar 

  15. Cataldi TRI, De Benedetto G, Bianchini A (1999) J Electroanal Chem 471:42

    Google Scholar 

  16. Karyakin AA, Gitelmacher OV, Karyakina EE (1994) Anal Lett 27:2861

    Google Scholar 

  17. Karyakin AA, Karyakina EE, Gorton L (1996) Talanta 43:1597

    Google Scholar 

  18. Chi QJ, Dong SJ (1995) Anal Chim Acta 310:429

    Google Scholar 

  19. Moscone D, D’Ottavi D, Compagnone D, Palleschi G, Amine A (2001) Anal Chem 73:2529

    Google Scholar 

  20. O’Halloran MP, Pravda M, Guilbault GG (2001) Talanta 55:605

    Google Scholar 

  21. Garjonyte R, Malinauskas A (1999) Sens Actuat B 56:93

    Google Scholar 

  22. Wang J, Zhang XJ, Prakash M (1999) Anal Chim Acta 395:11

    Google Scholar 

  23. Mattos IL, Gorton L, Laurell T, Malinauskas A, Karyakin AA (2000) Talanta 52:791

    Google Scholar 

  24. Lin MS, Wu YC, Jan BI (1999) Biotechnol Bioeng 62:56

    Google Scholar 

  25. Chen SM (2002) J Electroanal Chem 521:29

    Google Scholar 

  26. Eftekhari A (2003) Microchim Acta 141:15

    Google Scholar 

  27. Florescu M, Brett CMA (2004) Anal Lett 37:871

    Google Scholar 

  28. Cai CX, Xue KH, Zhou YM, Yang H (1997) Talanta 44:339

    Google Scholar 

  29. Milardović S, Kruhak I, Iveković D, Rumenjak V, Tkalčec M, Grabarić BS (1997) Anal Chim Acta 350:91

    Google Scholar 

  30. de Mattos IL, Gorton L (2001) Quim Nova 24:200

    Google Scholar 

  31. Chen S-M, Peng K-T (2003) J Electroanal Chem 547:179

    Google Scholar 

  32. Shankaran DR, Narayanan SS (2002) Sens Actuat B 86:180

    Google Scholar 

  33. Shankaran DR, Narayanan SS (1999) Fresen J Anal Chem 364:686

    Google Scholar 

  34. Brett CMA, Angnes L, Liess HD (2001) Electroanalysis 13:765

    Google Scholar 

  35. Filipe OMS, Brett CMA (2003) Talanta 61:643

    Google Scholar 

  36. Florescu M, Brett CMA (2005) Talanta 65:306

    Google Scholar 

  37. Filipe OMS, Brett CMA (2004) Electroanalysis 16:994

    Google Scholar 

  38. Joseph J, Gomathi H, Rao GP (1991) J Electroanal Chem 304:263

    Google Scholar 

  39. Chen SM, Chan CM (2003) J Electroanal Chem 543:161

    Google Scholar 

  40. Shankaran DR, Narayanan SS (1999) Fresen J Anal Chem 364:686

    Google Scholar 

  41. Lezna RO, Romangnoli R, de Tacconi NR, Rajeshwar K (2002) J Phys Chem B 106:3612

    Google Scholar 

  42. Antunes RMM, Sequeira CAC (2004) Ciênc Tecnol Mater (in Portuguese) 16:66

    Google Scholar 

  43. Makowski O, Stroka J, Kulesza PJ, Malik MA, Galus Z (2002) J Electroanal Chem 532:157

    Google Scholar 

  44. Kahlert H, Retter U, Lohse H, Siegler K, Scholz F (1998) J Phys Chem B 102:8757

    Google Scholar 

  45. Cardoso WS, Francisco MSP, Lucho AMS, Glushikem Y(2004) Solid State Ionics 167:165

    Google Scholar 

  46. Karyakin AA, Karyakina EE, Gorton L (1999) Electrochem Commun 1:78

    Google Scholar 

  47. Malinauskas A, Araminaitė R, Mickevičiūté G, Garjonytė R (2004) Mat Sci Eng C 24:513

    Google Scholar 

  48. Dostal A, Hermes M, Scholz F (1996) J Electroanal Chem 415:133

    Google Scholar 

  49. Mo JW, Ogorevc B, Zhang X, Pihlar B (2000) Electroanalysis 12:48

    Google Scholar 

Download references

Acknowledgements

Financial support from Fundação para a Ciência e Tecnologia (FCT) Portugal, ICEMS (Research Unit 103), and European Project HPRN-CT-2002-00186 is gratefully acknowledged. R Pauliukaite thanks FCT for a postdoctoral fellowship (SFRH/BPD/14518/2003). Prof. H.-D. Liess is thanked for the gift of the electrical resistors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. A. Brett.

Additional information

Dedicated to Professor George Horanyi on the occasion of his 70th birthday, in recognition of his outstanding contributions to electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauliukaite, R., Florescu, M. & Brett, C.M.A. Characterization of cobalt- and copper hexacyanoferrate-modified carbon film electrodes for redox-mediated biosensors. J Solid State Electrochem 9, 354–362 (2005). https://doi.org/10.1007/s10008-004-0632-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0632-8

Keywords

Navigation