Skip to main content
Log in

PEDOT films: multifunctional membranes for electrochemical ion sensing

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Properties of electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) films were studied from the point of view of direct use as ion-sensing membranes in potentiometric or amperometric sensors. Stable and reproducible potentiometric characteristics were obtained for PEDOT doped by poly(4-styrenesulfonate) ions, PEDOT(PSS) (cationic characteristics), and PEDOT doped by hexacyanoferrate(II) anions, PEDOT(HCF) (anionic characteristics). As shown by voltammetric and EDAX results, the anion exchange properties of the latter polymer result from gradual replacement of HCF ions by Cl anions from solution. The zero-current potentiometric detection limit of PEDOT(PSS), equal to 3×10−6 M, can be shifted to 7×10−7 M by polarization using a cathodic current density of 3×10−7 A cm−2. PEDOT films doped by Cl or PSS ions can be used as membranes for sensing anions or cations, respectively, under pulse amperometric conditions, within the range from 10−4 to 1 M, comparable with that accessible by zero-current potentiometry. Dissolved oxygen (redox interferent of low charge transfer rate) exerts a minor influence on the slope of the potentiometric and amperometric characteristics of PEDOT films. Although the presence of redox reactants characterized by a high rate of charge transfer [Fe(CN)6 3−/4−] results in the disappearance of the potential dependence on KCl concentration, this disadvantageous effect is much less significant under pulse amperometric conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oyama N, Hirokawa T, Yamaguchi S, Ushizawa N, Shimomura T (1987) Anal Chem 59:258

    CAS  Google Scholar 

  2. Cadogan A, Gao Z, Lewenstam A, Ivaska A, Diamond D (1992) Anal Chem 64:2496

    CAS  Google Scholar 

  3. Michalska A, Hulanicki A, Lewenstam A (1994) Analyst 119:2417

    CAS  Google Scholar 

  4. Bobacka J, Lindfors T, McCarrick M, Ivaska A, Lewenstam A (1995) Anal Chem 67:3819

    CAS  Google Scholar 

  5. Bobacka J (1999) Anal Chem 71:4932

    Article  CAS  Google Scholar 

  6. Dong S, Sun Z, Lu Z (1988) J Chem Soc Chem Commun 993

  7. Lu Z, Sun Z, Dong S (1989) Electroanalysis 1:271

    CAS  Google Scholar 

  8. Josowicz M (1995) Analyst 120:1019

    CAS  Google Scholar 

  9. Bobacka J, Gao Z, Ivaska A, Lewenstam A (1994) J Electroanal Chem 368:33

    CAS  Google Scholar 

  10. Tamm J, Alumaa A, Hallik A, Sammelselg V (1998) J Electroanal Chem 448:25

    CAS  Google Scholar 

  11. Ikariyama Y, Heineman WR (1986) Anal Chem 58:1803

    CAS  Google Scholar 

  12. Ikariyama Y, Galliatstoas C, Heineman WR, Yamauchi S (1987) Sens Actuators 12:455

    Article  CAS  Google Scholar 

  13. Ye J, Baldwin RP (1988) Anal Chem 60:1979

    CAS  Google Scholar 

  14. Sadik OA, Wallace GG (1993) Electroanalysis 5:555

    CAS  Google Scholar 

  15. Sadik OA, Wallace GG (1994) Electroanalysis 6:860

    CAS  Google Scholar 

  16. Barisci JM, Wallace GG, Clarke A (1997) Electroanalysis 9:461

    CAS  Google Scholar 

  17. Dong S, Sun Z, Lu Z (1988) Analyst 113:1525

    CAS  Google Scholar 

  18. Michalska A, Lewenstam A (2000) Anal Chim Acta 406:159

    CAS  Google Scholar 

  19. Hulanicki A, Michalska A, Lewenstam A (1994) Electroanalysis 6:604

    CAS  Google Scholar 

  20. Hulanicki A, Michalska A, Lewenstam A (1994) Talanta 41:323

    Article  CAS  Google Scholar 

  21. Michalska A, Maksymiuk K, Hulanicki A (1995) J Electroanal Chem 392:63

    Article  CAS  Google Scholar 

  22. Michalska A, Walkiewicz S, Maksymiuk K (2003) Electroanalysis 15:509

    Article  CAS  Google Scholar 

  23. Tsakova V, Winkels S, Schultze JW (2000) Electrochim Acta 46:759

    Article  CAS  Google Scholar 

  24. Sakmeche N, Aeiyach S, Aaron J-J, Jouini M, Lacroix JC, Lacaze P-C (1999) Langmuir 15:2566

    Article  CAS  Google Scholar 

  25. Mulfort KL, Ryu J, Zhou Q (2003) Polymer 44:3185

    Article  CAS  Google Scholar 

  26. Du X, Wang Z (2003) Electrochim Acta 48:1713

    Article  CAS  Google Scholar 

  27. Xing KZ, Fahlman M, Chen XW, Inganäs O, Salaneck WR (1997) Synth Met 89:161

    Article  CAS  Google Scholar 

  28. Łapkowski M, Proń A (2000) Synth Met 110:79

    Article  Google Scholar 

  29. Garreau S, Duvail JL, Louran G (2002) Synth Met 125:325

    Article  CAS  Google Scholar 

  30. Bobacka J, Lewenstam A, Ivaska A (2000) J Electroanal Chem 489:17

    Article  CAS  Google Scholar 

  31. Lisowska-Oleksiak A, Kazubowska K, Kupniewska A (2001) J Electroanal Chem 501:54

    Article  CAS  Google Scholar 

  32. Randriamahazaka H, Noël V, Chevrot C (2002) J Electroanal Chem 521:107

    Article  CAS  Google Scholar 

  33. Vazquez M, Bobacka J, Ivaska A, Lewenstam A (2002) Sens Actuators B 82:7

    Article  Google Scholar 

  34. Cui X, Martin DC (2003) Sens Actuators B 89:92

    Article  Google Scholar 

  35. Bobacka J, Lahtinen T, Nordman J, Häggström A, Rissanen K, Lewenstam A, Ivaska A (2001) Electroanalysis 13:723

    Article  CAS  Google Scholar 

  36. Bobacka J, Lahtinen T, Koskinen H, Rissanen K, Lewenstam A, Ivaska A (2002) Electroanalysis 14:1353

    Article  CAS  Google Scholar 

  37. Meier PC (1982) Anal Chim Acta 136:363

    Article  CAS  Google Scholar 

  38. Momma T, Komaba S, Yamamoto M, Osaka T, Yamauchi S (1995) Sens Actuators B 24–25:724

  39. Wojda A, Maksymiuk K (1998) J Electroanal Chem 441:205

    CAS  Google Scholar 

  40. Michalska A, Ivaska A, Lewenstam A (1997) Anal Chem 69:4060

    CAS  Google Scholar 

  41. Michalska A, Nadrzycka U, Maksymiuk K (2001) Electrochim Acta 46:4113

    Article  CAS  Google Scholar 

  42. Pfluger P, Kronubi M, Street GB, Weiser G (1983) J Chem Phys 78:3212

    Article  CAS  Google Scholar 

  43. Dumańska J, Maksymiuk K (2001) Electroanalysis 13:567

    Article  Google Scholar 

  44. Krivan E, Visy C, Kankare J (2003) J Phys Chem B 107:1302

    Article  CAS  Google Scholar 

  45. Ogonowska M (2002) MSc Thesis, Warsaw University

  46. Lindner E, Gyurcsanyi R, Buck RP (1999) Electroanalysis 11:673

    Article  Google Scholar 

  47. Pergel E, Gyurcsanyi R, Toth K, Lindner E (2001) Anal Chem 73:4249

    Article  CAS  PubMed  Google Scholar 

  48. Morf WE, Badertscher M, Zwickl T, de Rooij NF, Pretsch E (2002) J Electroanal Chem 526:19

    Article  CAS  Google Scholar 

  49. Michalska A, Dumańska J, Maksymiuk K (2003) Anal Chem 75:4964

  50. Paulse CD, Pickup PG (1988) J Phys Chem 92:7002

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Bayer for providing them with the EDOT monomer. Financial support by grant 7 T09A 01720 from KBN (Poland) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Maksymiuk.

Additional information

Dedicated to the memory of Harry B. Mark, Jr. (February 28, 1934–March 3rd, 2003)

Contribution to the 3rd Baltic Conference on Electrochemistry, GDAŃSK-SOBIESZEWO, 23–26 April 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalska, A., Gałuszkiewicz, A., Ogonowska, M. et al. PEDOT films: multifunctional membranes for electrochemical ion sensing. J Solid State Electrochem 8, 381–389 (2004). https://doi.org/10.1007/s10008-003-0459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0459-8

Keywords

Navigation