Skip to main content
Log in

First-principle study on the geometric and electronic structure of Mg-doped LiNiO2 for Li-ion batteries

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Ni-rich layered oxides have been widely studied as cathodes because of their high energy density. However, the gradual structural transformation during the cycle will lead to the capacity degradation and potential decay of the cathode materials. In this paper, first-principle calculations were used to investigate the formation energy, and geometric and electronic structure of Mg-doped LiNiO2 cathode for Li-ion batteries. The results show that Mg doping has little effect on the geometric structure of LiNiO2 but has great effect on its electronic structure. Our data give an insight into the microscopic mechanism of Mg-doped LiNiO2 and provide a theoretical reference for experimental research, which is helpful to the design of safer and higher energy density Ni-rich cathodes.

Method

In this work, all calculations were performed by the VASP package; the PBE functional in the generalized gradient approximation (GGA) was employed to describe the exchange–correlation interactions. An energy cutoff of 520 eV and a 5 × 5 × 3 Monkhorst–Pack mesh of k-point sampling in the Brillouin zone were chosen for all calculations. All atoms were relaxed until the convergences of 10−5 eV/f.u in energy and 0.01 eV/Å in force were reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Wang S, Wang Q, Shao H, Jin Z (2023) Adv Mater 35:2303355

    Article  CAS  Google Scholar 

  3. Sun L, Xie J, Jin Z (2019) Energy Technol 7:1900962

    Article  CAS  Google Scholar 

  4. Lu L, Han X, Li J, Hua J, Ouyang M (2013) J Power Source 226:272

    Article  CAS  Google Scholar 

  5. Goodenough JB, Kim Y (2010) Chem Mater 22:587

    Article  CAS  Google Scholar 

  6. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243

    Article  CAS  Google Scholar 

  7. Sun L, Liu Y, Shao R, Wu J, Jiang R, Jin Z (2022) Energy Storage Mater 46:482

    Article  Google Scholar 

  8. Wang Y, Liang J, Song X, Jin Z (2023) Energy Storage Mater 54:732

    Article  Google Scholar 

  9. Kalyani P, Kalaiselvi N (2005) Sci Technol Adv Mater 6:689

    Article  CAS  Google Scholar 

  10. Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J (2019) Angew Chem Int Ed 58:10434

    Article  CAS  Google Scholar 

  11. Zhao E, Fang L, Chen M, Chen D, Huang Q, Hu Z, Yan QB, Wu M, Xiao X (2017) J Mater Chem A 5:1679

    Article  CAS  Google Scholar 

  12. Choi D, Kang J, Han B (2019) Electrochim Acta 294:166

    Article  CAS  Google Scholar 

  13. Kang J, Han B (2015) Acs Appl Mater Interfaces 7:11599

    Article  CAS  PubMed  Google Scholar 

  14. Ohzuku T, Ueda A, Nagayama M (1993) J Electrochem Soc 24:1862

    Article  Google Scholar 

  15. Urban A, Abdellahi A, Dacek S, Artrith N, Ceder G (2017) Phys Rev Lett 119:176402

    Article  PubMed  Google Scholar 

  16. Duan J, Hu G, Cao Y, Tan C, Wu C, Du K, Peng Z (2016) J Power Source 326:322

    Article  CAS  Google Scholar 

  17. Dianat A, Seriani N, Bobeth M, Cuniberti G (2013) J Mater Chem A 1:9273

    Article  CAS  Google Scholar 

  18. Hong-Bin L, Chun L, Yue C, Ke-Hua Z, Jian-Min Z, Gui-Gui X, Zhi-Gao H (2021) Acta Phy Sin-CH ED 70:138201

    Article  Google Scholar 

  19. Shim JH, Kim YM, Park M, Kim J, Lee S (2017) Acs Appl Mater Interfaces 9:18720

    Article  CAS  PubMed  Google Scholar 

  20. Xiong X, Wang Z, Yan G, Guo H, Li X (2014) J Power Sources 245:183

    Article  CAS  Google Scholar 

  21. Chen Z, Qin Y, Amine K, Sun YK (2010) J Mater Chem 20:7606

    Article  CAS  Google Scholar 

  22. Song MY, Lee DS, Park HR (2012) Mater Res Bull 47:1021

    Article  CAS  Google Scholar 

  23. Huang GX, Wang RH, Lv XY, Su J, Long YF, Qin ZZ, Wen YX (2022) J Electrochem Soc 169:040533

    Article  CAS  Google Scholar 

  24. Kong F, Liang C, Longo RC, Yeon DH, Zheng Y, Park JH, Doo SG, Cho K (2016) Chem Mater 28:6942

    Article  CAS  Google Scholar 

  25. Gomez-Martin A, Reissig F, Frankenstein L, Heidbüchel M, Winter M, Placke T, Schmuch R (2022) Adv Energy Mater 12:2103045

    Article  CAS  Google Scholar 

  26. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Comp Mater Sci 6:15

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  29. Jain A, Hautier G, Ong SP, Moore CJ, Fischer CC, Persson KA, Ceder G (2011) Phys Rev B 84:045115

    Article  Google Scholar 

  30. Xiao P, Deng ZQ, Manthiram A, Henkelman G (2012) J Phys Chem C 116:23201

    Article  CAS  Google Scholar 

  31. Hu W, Kou H, Chen Y, Wang Y, Zhu H, Li G, Li H (2022) Colloid Surface A 648:129185

    Article  CAS  Google Scholar 

  32. Vallverdu G, Minvielle M, Andreu N, Gonbeau D, Baraille I (2016) Surf Sci 649:46

    Article  CAS  Google Scholar 

  33. Dyer LD, Borie BS, Smith GP (1954) J Am Chem Soc 76:1499

    Article  CAS  Google Scholar 

  34. Seong WM, Manthiram A (2020) Acs Appl Mater Interfaces 12:43653

    Article  CAS  PubMed  Google Scholar 

  35. Kanno R, Kubo H, Kawamoto Y, Kamiyama T, Izumi F, Takeda Y, Takano M (1994) J Solid State Chem 110:216

    Article  CAS  Google Scholar 

  36. Fang L, Wang M, Zhou Q, Xu H, Hu W, Li H (2020) Colloid Surface A 600:124940

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Project of Jiangxi Provincial Department of Education (Grant No. GJJ211215) and Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program (No: CXTD22015).

Author information

Authors and Affiliations

Authors

Contributions

HL: conceptualization, writing—original draft preparation, writing—review; YZ: methodology, investigation; QY: formal analysis; WH: resources, supervision; QZ: formal analysis, editing.

Corresponding authors

Correspondence to Qing Ye or Wei Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, Y., Ye, Q. et al. First-principle study on the geometric and electronic structure of Mg-doped LiNiO2 for Li-ion batteries. J Mol Model 29, 389 (2023). https://doi.org/10.1007/s00894-023-05797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05797-w

Keywords

Navigation