Skip to main content

Advertisement

Log in

Progress in theoretical study of lead-free halide double perovskite Na2AgSbX6 (X = F, Cl, Br, and I) thermoelectric materials

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Herein, we have studied progressively novel metal lead-free halide double perovskite renewable energy materials. Due to their potential use in electronic devices, researchers have investigated these materials with a lot of interest. From the electronic structure, we have found that these are the indirect band gap semiconductors within the range between 1.273 and 3.986 eV. Optical parameters such as dielectric constant, electrical conductivity, and absorption coefficient have also been investigated, which have shown that these materials have potential use in photovoltaics. We have checked stability issues by thermodynamic parameters and phonon spectra. We have found them thermally stable; however, the phonon spectra show their dynamical instability and except for Na2AgSbF6 and Na2AgSbI6, the remaining compounds are weak in mechanical stability. For another futuristic purpose, thermoelectric parameters such as Seebeck coefficient, power factor, and figure of merit have also been calculated, which again verifies that these materials may be very useful in thermoelectric devices. Most of the parameters have been computed for the first time.

Methods

We have performed this computational work using WIEN2k simulation code, which is based on the full-potential linearized augmented plane wave (FP-LAPW) technique. It is one of the most reliable techniques to calculate the photovoltaic properties of semiconducting perovskites. The interaction between ion-core and valence electrons was dealt with within the PAW technique as implemented in Vienna Ab initio Simulation Package (VASP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data and materials will be available on reasonable request.

References

  1. Xiao Z, Yan Y (2017) Progress in theoretical study of metal halide perovskite solar cell materials. Adv Energy Mater 7:1701136

    Article  Google Scholar 

  2. Lai X, Li W, Gu X, Chen H, Zhang Y, Li G, ... Sun XW (2022) High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chem Eng J 427:130949

  3. Rani U, Kamlesh PK, Shukla A, Verma AS (2021) Emerging potential antiperovskite materials ANX3 (A= P, As, Sb, Bi; X= Sr, Ca, Mg) for thermoelectric renewable energy generators. J Solid State Chem 300:122246

    Article  CAS  Google Scholar 

  4. Rani U, Soni Y, Kamlesh PK, Shukla A, Verma AS (2021) Fundamental theoretical design of Na-ion and K-ion based double antiperovskite X6SOA2 (X= Na, K; A= Cl, Br and I) halides: potential candidate for energy storage and harvester. Int J Energy Res 45:13442–13460

    Article  CAS  Google Scholar 

  5. Rani U, Kamlesh PK, Agarwal R, Kumari J, Verma AS (2021) Electronic and thermo-physical properties of double antiperovskites X6SOA2 (X= Na, K and A= Cl, Br, I): a non-toxic and efficient energy storage materials. Int J Quantum Chem 121:e26759

    Article  CAS  Google Scholar 

  6. Rani U, Kamlesh PK, Agrawal R, Shukla A, Verma AS (2022) Emerging study on lead-free hybrid double perovskite (CH3NH3)2AgInBr 6: potential material for energy conversion between heat and electricity. Energy Technol 2200002

  7. Liu S, Chen R, Tian X, Yang Z, Zhou J, Ren F ... Chen W (2022) Boost the efficiency of nickel oxide-based formamidinium-cesium perovskite solar cells to 21% by using coumarin 343 dye as defect passivator. Nano Energy 94:106935

  8. Cheng L, Xu B, Li X, Zeng Y, Meng L (2022) Electronic and photovoltaic properties of superlattices constructed by organic–inorganic perovskites: a theoretical perspective. ACS Appl Energy Mater 5:2430–2441

    Article  CAS  Google Scholar 

  9. Tailor NK, Listorti A, Colella S, Satapathi S (2022) Lead-free halide double perovskites: fundamentals, challenges, and photovoltaics applications. Adv Mater Technol 2200442. https://doi.org/10.1002/admt.202200442

  10. Li Q, Wang Y, Pan W, Yang W, Zou B, Tang J, Quan Z (2017) High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew Chem Int Ed 56:15969–15973

    Article  CAS  Google Scholar 

  11. Yadav SC, Srivastava A, Manjunath V, Kanwade A, Devan RS, Shirage PM (2022) Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite. Mater Today Phys 26:100731

    Article  Google Scholar 

  12. Pantaler M, Fettkenhauer C, Nguyen HL, Anusca I, Lupascu DC (2018) Deposition routes of Cs2AgBiBr6 double perovskites for photovoltaic applications. MRS Adv 3:1819–1823

    Article  CAS  Google Scholar 

  13. Al-Qaisi S, Mebed AM, Mushtaq M, Rai DP, Alrebdi TA, Sheikh RA, Rached H et al (2023) A theoretical investigation of the lead-free double perovskites halides Rb2XCl6 (X= Se, Ti) for optoelectronic and thermoelectric applications. J Comput Chem. https://doi.org/10.1002/jcc.27119

    Article  PubMed  Google Scholar 

  14. Mebed AM, Al-Qaisi S, Azmat Ali M (2022) Study of optoelectronic and thermoelectric properties of double perovskites Rb2AgBiX6 (X= Br, I): by DFT approach. Eur Phys J Plus 137:1–8

    Article  Google Scholar 

  15. Al-Qaisi S, Mahmood Q, Kattan NA, Alhassan S, Alshahrani T, Sfina N, Brini S, Hakamy A, Mera A, Amin MA (2023) Tuning of band gap by variation of halide ions in K2CuSbX6 (X= Cl, Br, I) for solar cells and thermoelectric applications. J Phys Chem Solids 174:111184

    Article  CAS  Google Scholar 

  16. Albalawi H, Nazir G, Younas M, Al-Qaisi S, Ashiq MGB, Alzahrani J, Somaily HH, Morsi M, Ghrib T (2022) Study of lead-free vacancy ordered double perovskites Cs2TeX6 (X= Cl, Br, I) for solar cells, and renewable energy. Phys Scr 97:095801

    Article  Google Scholar 

  17. Ali MA, Alshgari RA, Bahajjaj AAA, Sillanpää M (2023) The study of new double perovskites K2AgAsX6 (X= Cl, Br) for energy-based applications. J Taibah Univ Sci 17:2170680

    Article  Google Scholar 

  18. Ullah R, Ali MA, Khan A, Alshgari RA, Mushab MSS, Samad A (2022) Effect of cation exchange on structural, electronic, magnetic and transport properties of Ba2MReO6 (M= In, Gd). J Magn Magn Mater 546:168816

    Article  CAS  Google Scholar 

  19. Ullah R, Ali MA, UlHaq B, Khan A, Mahmood Q, Murtaza G (2022) Exploring electronic, structural, magnetic and thermoelectric properties of novel Ba2EuMoO6 double perovskite. Mater Sci Semicond Process 137:106218

    Article  CAS  Google Scholar 

  20. Zhang X, Lv Y, Lv Y, Liu Y, Yang Z (2022) Indirect-to-direct band gap transition and optical properties of Cs2BiAgX6 with mechanical strains: the density functional theory investigation. J Market Res 17:425–432

    CAS  Google Scholar 

  21. Muscarella LA, Hutter EM (2022) Halide double-perovskite semiconductors beyond photovoltaics. ACS Energy Lett 7:2128–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Sun Q, Lu Y, Lu F, Mu X, Wei SH, Sui M (2022) Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat Commun 13:1–12

    Google Scholar 

  23. Abdelsamie MA, Cruse K, Tamura N, Ceder G, Sutter-Fella CM (2022) Impact of processing conditions on the film formation of lead-free halide double perovskite Cs2AgBiBr6. J Mater Chem A. https://doi.org/10.1039/D2TA00763K

    Article  Google Scholar 

  24. Amraoui S, Feraoun A, Kerouad M (2022) Performance analysis of lead-free halide double perovskite-based photovoltaic devices for solar cell conception. J Alloys Compd 166509. https://doi.org/10.1016/j.jallcom.2022.166509

  25. Al-Qaisi S, Mushtaq M, Alomairy S, Vu TV, Rached H, Haq BU, Mahmood Q, Al-Buriahi MS (2022) First-principles investigations of Na2CuMCl6 (M= Bi, Sb) double perovskite semiconductors: materials for green technology. Mater Sci Semicond Process 150:106947

    Article  CAS  Google Scholar 

  26. Asghar M, Zanib M, Khan MA, Niaz S, Noor NA, Dahshan A (2022) Tuning of the bandgap of Rb2ScAgX6 (X= Cl, Br, I) double perovskites through halide ion replacement for solar cell applications. Mater Sci Semicond Process 148:106819

    Article  CAS  Google Scholar 

  27. Dar SA, Want B, Khandy SA (2022) Computer based predictions of structural stability and systematic study of magneto-electronic and optical properties of lead free halide double perovskites: Cs2KXCl6: X= Co and Ni. J Magn Magn Mater 545:168603

    Article  CAS  Google Scholar 

  28. Nawaz PA, Mustafa GM, Iqbal SS, Noor NA, Ahmad TS, Mahmood A, Neffati R (2022) Theoretical investigations of optoelectronic and transport properties of Rb2YInX6 (X= Cl, Br, I) double perovskite materials for solar cell applications. Sol Energy 231:586–592

    Article  Google Scholar 

  29. Zheng Y, Luo F, Ruan L, Tong J, Yan L, Sun C, Zhang X (2022) A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application. J Alloy Compd 909:164613

    Article  CAS  Google Scholar 

  30. Kibbou M, Haman Z, Khossossi N, Singh D, Essaoudi I, Ainane A, Ahuja R (2022) Probing the electronic, optical and transport properties of halide double perovskites Rb2InSb(Cl, Br)6 for solar cells and thermoelectric applications. J Solid State Chem 312:123262

    Article  CAS  Google Scholar 

  31. Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave + local orbital program for calculating crystal properties. Austria Karlheinz Schwarz, Technical University, Wien

    Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  33. Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band–structure-dependent quantities. Comput Phys Commun 175:67–71

    Article  CAS  Google Scholar 

  34. Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V (2011) Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput Phys Commun 182:2232–2248

    Article  CAS  Google Scholar 

  35. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  36. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  38. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106

    Article  Google Scholar 

  39. Parlinski K, Li ZQ, Kawazoe Y (1997) First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett 78:4063–4066

    Article  CAS  Google Scholar 

  40. Kamlesh PK, Gautam R, Kumari S, Verma AS (2021) Investigation of inherent properties of XScZ (X = Li, Na, K; Z = C, Si, Ge) half-Heusler compounds: appropriate for photovoltaic and thermoelectric applications. Physica B Condens Matter 615:412536

    Article  CAS  Google Scholar 

  41. Soni Y, Rani U, Shukla A, Joshi TK, Verma AS (2022) Transition metal-based halides double Cs2ZSbX6 (Z= Ag, Cu, and X= Cl, Br, I) perovskites: a mechanically stable and highly absorptive materials for photovoltaic devices. J Solid State Chem 314:123420

    Article  CAS  Google Scholar 

  42. Kamlesh PK, Agarwal R, Rani U, Verma AS (2021) First-principles calculations of inherent properties of Rb based state-of-the-art half-Heusler compounds: promising materials for renewable energy applications. Phys Scr 96:115802

    Article  Google Scholar 

  43. Verma P, Singh C, Kamlesh PK, Kaur K, Verma AS (2023) Nowotny-Juza phase KBeX (X= N, P, As, Sb, and Bi) half-Heusler compounds: applicability in photovoltaics and thermoelectric generators. J Mol Model 29:23

    Article  CAS  Google Scholar 

  44. Kamlesh PK, Pravesh, Kumari S, Verma AS (2020) Effect of hybrid density functionals on half-Heusler LiZnX (X = N, P and As) semiconductors: potential materials for photovoltaic and thermoelectric applications. Phys Scr 95:095806

    Article  CAS  Google Scholar 

  45. Kumar A, Kumar M, Singh RP (2021) Magnetic, opto-electronic, and thermodynamic properties of half-metallic double perovskite oxide, Ba2YbTaO6: a density functional theory study. J Mater Sci: Mater Electron 32:12951–12965

    CAS  Google Scholar 

  46. Francisco E, Recio J, Blanco M, Pend’as AM, Costales A (1998) Quantum-mechanical study of thermodynamic and bonding properties of MgF2. J Phys Chem A 102:1595–1601

    Article  CAS  Google Scholar 

  47. Petit AT, Dulong PL (1819) Recherches sur quelques points importants de la chaleur. Ann Chim Phys 10:395–413

    Google Scholar 

  48. Kamlesh PK, Agrawal R, Rani U, Verma AS (2022) Comprehensive ab-initio calculations of AlNiX (X = P, As and Sb) half-Heusler compounds: stabilities and applications as green energy resources. Mater Chem Phys 275:125233

    Article  CAS  Google Scholar 

  49. Al-Qaisi S, Ali MA, Alrebdi TA, Vu TV, Morsi M, UlHaq B, Ahmed R, Mahmood Q, Tahir SA (2022) First-principles investigations of Ba2NaIO6 double perovskite semiconductor: material for low-cost energy technologies. Mater Chem Phys 275:125237

    Article  CAS  Google Scholar 

  50. Pugh S XCII (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci 45:823–843

  51. Pettifor D (1992) Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol 8:345–349

    Article  CAS  Google Scholar 

  52. Vaitheeswaran G, Kanchana V, Svane A, Delin A (2007) Elastic properties of MgCNi3 – a superconducting perovskite. J Phys Condens Matter 19:326214

    Article  Google Scholar 

  53. Anderson OL, Demarest HH Jr (1971) Elastic constants of the central force model for cubic structures: polycrystalline aggregates and instabilities. J Geophys Res 76:1349–1369

    Article  CAS  Google Scholar 

  54. Arikan N, Yildiz GD, Yildiz YG, İyigör A (2020) Electronic, elastic, vibrational and thermodynamic properties of HfIrX (X= as, Sb and Bi) compounds: insights from DFT-based computer simulation. J Electron Mater 49:1–11

    Article  Google Scholar 

  55. Zhou D, Liu J, Xu S, Peng P (2012) Thermal stability and elastic properties of Mg2X (X= Si, Ge, Sn, Pb) phases from first-principle calculations. Comput Mater Sci 51:409–414

    Article  CAS  Google Scholar 

  56. Hoffmann A (1935) Examinations of compounds with Perovskite structure. Z Phys Chem 28:65–77

    Article  Google Scholar 

  57. Knight K (1994) Structural phase transitions in BaCeO3. Solid State Ionics 74:109–117

    Article  CAS  Google Scholar 

  58. Knight KS (2001) Structural phase transitions, oxygen vacancy ordering and protonation in doped BaCeO3: results from time-of-flight neutron powder diffraction investigations. Solid State Ionics 145:275–294

    Article  CAS  Google Scholar 

  59. Genet F, Loridant S, Ritter C, Lucazeau G, Genet F, Loridant S, Ritter C, Lucazeau G (1999) Phase transitions in BaCeO3: neutron diffraction and Raman studies. J Phys Chem Solids 60:2009–2021

    Article  CAS  Google Scholar 

  60. Stoffel RP, Dronskowski R (2013) First-principles investigations of the structural, vibrational and thermochemical properties of barium cerate–another test case for density-functional theory. Z Anorg Allg Chem 639:1227–1231

    Article  CAS  Google Scholar 

  61. Zhang Q, Ding J, He M (2017) First principles study on structural, lattice dynamical and thermal properties of BaCeO3. J Phys Chem Solids 108:76–81

    Article  CAS  Google Scholar 

  62. Scaife DE, Weller PF, Fisher WG (1974) Crystal preparation and properties of cesium tin (II) trihalides. J Solid State Chem 9:308–314

    Article  CAS  Google Scholar 

  63. Yamada K, Funabiki S, Horimoto H, Matsui T, Okuda T, Ichiba S (1991) Structural phase transitions of the polymorphs of CsSnI3 by means of rietveld analysis of the X-ray diffraction. Chem Lett 20:801–804

    Article  Google Scholar 

  64. Huang L-Y, Lambrecht WRL (2014) Lattice dynamics in perovskite halides CsSnX3 with X= I Br, Cl. Phys Rev B 90:195201

    Article  Google Scholar 

  65. Mori M, Masahiro, Saito H (1986) An X-ray study of successive phase transitions in CsSnBr 3. J Phys C: Solid State Phys 19:2391

    Article  CAS  Google Scholar 

  66. Gesi K, Axe JD, Shirane G, Linz A (1972) Dispersion and damping of soft zone-boundary phonons in KMnF3. Phys Rev B 5:1933–1941

    Article  Google Scholar 

  67. Scott JF (1974) Soft-mode spectroscopy: experimental studies of structural phase transitions. Rev Mod Phys 46:83–128

    Article  CAS  Google Scholar 

  68. Shirane G (1974) Neutron scattering studies of structural phase transitions at Brookhaven. Rev Modern Phys 46:437–449

    Article  CAS  Google Scholar 

  69. Fujii Y, Hoshino S, Yamada Y, Shirane G (1974) Neutron-scattering study on phase transitions of CsPbCl3. Phys Rev B 9:4549–4559

    Article  CAS  Google Scholar 

  70. Woodward PM (1997) Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr Sect B: Struct Sci 53:44–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sunita Kumari: Investigation, writing original draft; Peeyush Kumar Kamlesh: methodology; Lalit Kumari: data curation; Sudhir Kumar: software; Sarita Kumari: supervision; Rashmi Singh: visualization; Rajeev Gupta: conceptualization; Manendra S. Chauhan: validation; Upasana Rani: resources; Ajay Singh Verma: writing—reviewing and editing.

Corresponding author

Correspondence to Ajay Singh Verma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable on this work.

Conflict of interest

This manuscript does not include conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Kamlesh, P.K., Kumari, L. et al. Progress in theoretical study of lead-free halide double perovskite Na2AgSbX6 (X = F, Cl, Br, and I) thermoelectric materials. J Mol Model 29, 195 (2023). https://doi.org/10.1007/s00894-023-05599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05599-0

Keywords

Navigation