Skip to main content

Advertisement

Log in

Possible boron-rich amorphous silicon borides from ab initio simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

By means of ab initio molecular dynamics simulations, possible boron-rich amorphous silicon borides (BnSi1−n, 0.5 ≤ n ≤ 0.95) are generated and their microstructure, electrical properties and mechanical characters are scrutinized in details. As expected, the mean coordination number of each species increases progressively and more closed packed structures form with increasing B concentration. In all amorphous models, pentagonal pyramid-like configurations are observed and some of which lead to the development of B12 and B11Si icosahedrons. It should be noted that the B11Si icosahedron does not form in any crystalline silicon borides. Due to the affinity of B atoms to form cage-like clusters, phase separations (Si:B) are perceived in the most models. All simulated amorphous configurations are a semiconducting material on the basis of GGA+U calculations. The bulk modulus of the computer-generated amorphous compounds is in the range of 90 GPa to 182 GPa. As predictable, the Vickers hardness increases with increasing B content and reaches values of 25-33 GPa at 95% B concentration. Due to their electrical and mechanical properties, these materials might offer some practical applications in semiconductor technologies.

Method

The density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations were used to generate B-rich amorphous configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms a part of an ongoing study.

References

  1. Moissan H, Stock A (1990) Preparation and properties of two silicon borides: SiB3 and SiB6. CR Acad Sci 131:139–143

    Google Scholar 

  2. Samsonov GV, Latysheva VP (1995) voprosu o khimicheskikh soedineniyakh bora s kremniem. Dokl Akad Nauk SSSR 105:499–499

    Google Scholar 

  3. Zhuravlev NN (1956) X-ray determination of the structure of SiB. Kristallografiya 1:666–668

    CAS  Google Scholar 

  4. Adamsky RF (1958) Unit cell and space group of orthorhombic SiB6. Acta Crystallogr 11:744–745

    CAS  Google Scholar 

  5. Cline CF (1958) Preliminary investigations of the silicon boride, SiB6. Nature 181:476–477

    CAS  Google Scholar 

  6. Cline CF (1959) An investigation of the compound silicon boride (SiB6). J Electrochem Soc 106:322–322

    CAS  Google Scholar 

  7. Giese R (1970) Polyhedral groups in the phase SiB6. Electron Technol 3:151–157

    CAS  Google Scholar 

  8. Vlasse M, Slack GA, Garbauslas M, Kasper JS, Viala JC (1986) The crystal structure of SiB6. J Solid State Chem 63:31–45

    CAS  Google Scholar 

  9. Brosset C (1960) Magnusson B. The silicon-boron system. Nature 187:54–55

    CAS  Google Scholar 

  10. Cline CF, Sands DE (1960) A new silicon boride, SiB4. Nature 185:456–456

    CAS  Google Scholar 

  11. Matkovich VI (1960) A new form of boron silicide, B4Si. Acta Crystallogr 13:679–680

    CAS  Google Scholar 

  12. Magnusson B, Brosset C (1962) The crystal structure of В2.8Si. Acta Chem Scand 16:449–455

    CAS  Google Scholar 

  13. Dietze W, Miller M, Amberger E (1970) Pyrolitic formation of Si-doped B and silicon borides. Electron Technol 3:73–79

    CAS  Google Scholar 

  14. Rizzo HF, Bidwell LR (1960) Formation and structure of SiB4. J Am Ceram Soc 43:550–552

    CAS  Google Scholar 

  15. Samsonov GV, Sleptsov VM (1964) Preparation of boron-silicon alloys. Sov Powder Metall Met Ceram 3:488–496

    Google Scholar 

  16. Bairamashvili IA, Kalandadze GI, Eristavi AM, Jobava JS, Chotulidi VV, Saloev YI (1979) An investigation of the physicomechanical properties of B6O and SiB4. J Less Common Met 67:455–459

    CAS  Google Scholar 

  17. Tremblay R (1989) Angers R. Preparation of high purity SiB4 by solid-state reaction between Si and B. Ceram Int 15:73–78

    CAS  Google Scholar 

  18. Tremblay R, Angers R (1991) Mechanical characterization of dense silicon tetraboride (SiB4). Ceram Int 18:113–117

    Google Scholar 

  19. Emin D (1987) Icosahedral boron-rich solids as refractory semiconductors. MRS OPL Archive 97:3–15

    CAS  Google Scholar 

  20. Lundstro T, Andreev YG (1996) Superhard boron-rich borides and studies of the BCN system. Mater Sci Eng A 209:16–22

    Google Scholar 

  21. Slack GA, Morgan KE (2014) Some crystallography, chemistry, physics, and thermodynamics of B12O2, B12P2, B12As2, and related alpha-boron type crystals. J Phys Chem Solid 75:1054–1074

    CAS  Google Scholar 

  22. Slack GA, McNelly TF, Taft EA (1983) Melt growth and properties of B6P crystals. J Phys Chem Solid 44:1009–1013

    CAS  Google Scholar 

  23. Hubert H, Devouard B, Garvie LA, O'Keeffe M, Buseck PR, Petuskey WT, McMillan PF (1998) Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391:376–378

    Google Scholar 

  24. Zhang H, Yao S, Widom M (2016) Predicted phase diagram of boron-carbon-nitrogen. Phys Rev B 93:144107

    Google Scholar 

  25. Franz R, Werheit H (1991) Boron—rich solids. AIP Conf Proc 231:29

    CAS  Google Scholar 

  26. Emin D (1987) Icosahedral boron-rich solids. Phys Today 40:55–62

    CAS  Google Scholar 

  27. Hori A, Takeda M, Yamashita H, Kimura K (1995) Absorption edge spectra of boron-rich amorphous films constructed with icosahedral cluster. J Physical Soc Japan 64:3496–3505

    CAS  Google Scholar 

  28. Berezin AA, Golokova OA, Kazanin MM, Khomidov T, Mirlin DN, Petrov AV, Umarov AS, Zaitsev VK (1974) Electrical and optical properties of amorphous boron and amorphous concept for ß-rhombohedral boron. J Non Cryst Solids 16:237–246

    Google Scholar 

  29. Matsuda H, Nakayama T, Kimura K, Murakami Y, Suematsu H, Kobayashi M, Higashi I (1995) Structural and electronic properties of Li-and Cu-doped β-rhombohedral boron constructed from icosahedral and truncated icosahedral clusters. Phys Rev B 52:6102–6110

    CAS  Google Scholar 

  30. Motozima S, Sugiyama K, Takahashi Y (1975) Chemical vapor deposition of tetraboron silicide whiskers. Bull Chem Soc Jpn 48:1463–1466

    CAS  Google Scholar 

  31. Tsai CC (1979) Characterization of amorphous semiconducting silicon-boron alloys prepared by plasma decomposition. Phys Rev B 19:2041–2055

    CAS  Google Scholar 

  32. Murase K, Ogino T, Mizushima Y (1983) Thermal oxidation of amorphous silicon-germanium-boron alloy. Jpn J Appl Phys 22:1771–1777

    CAS  Google Scholar 

  33. Ong CW, Chik KP, Wong HK (1993) Effects of Si incorporation on the structural change of a-BxSi1−x alloy films. J Appl Phys 74:6094–6099

    CAS  Google Scholar 

  34. Yang GR, Zhao YP, Tong BY (1996) FTIR and UV study of amorphous silicon-boron alloys deposited by LPCVD. MRS OPL Archive 426:83–88

    CAS  Google Scholar 

  35. Yang GR, Zhao YP, Abburi M, Dabral S, Tong BY (1997) Comparison of low-temperature oxidation of crystalline Si and B with a-Si:B alloy: an x-ray photoelectron spectroscopy study. J Vac Sci Technol A 15:279–283

    CAS  Google Scholar 

  36. Chen L, Goto T, Li J, Hirai T (1996) Synthesis and thermoelectric properties of boron-rich silicon borides. Mater Trans JIM 37:1182–1185

    CAS  Google Scholar 

  37. Takeda M, Ichimura M, Yamaguchi H, Sakairi Y, Kimura K (2000) Preparation of boron–silicon thin film by pulsed laser deposition and its properties. J Solid State Chem 154:141–144

    CAS  Google Scholar 

  38. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53:R10441–R10444

    Google Scholar 

  39. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    CAS  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  41. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    CAS  Google Scholar 

  42. Mostafa A, Medraj M (2017) Binary phase diagrams and thermodynamic properties of silicon and essential doping elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl). Materials 10(6):676

    PubMed  PubMed Central  Google Scholar 

  43. Eklöf D, Fischer A, Ektarawong A et al (2019) Mysterious SiB3: identifying the relation between α-and β-SiB3. ACS Omega 4:18741–18759

    PubMed  PubMed Central  Google Scholar 

  44. Salvador JR, Bilc D, Mahanti SD, Kanatzidis MG (2003) Stabilization of β-SiB3 from liquid Ga: a boron-rich binary semiconductor resistant to high-temperature air oxidation. Angew Chem 42:1973–1976

    Google Scholar 

  45. Gali A, Miro J, Deák P, Ewels CP, Jones R (1996) Theoretical studies on nitrogen-oxygen complexes in silicon. J Phys Condens Matter 8:7711–7722

    CAS  Google Scholar 

  46. Voronoi G (1908) Recherches sur les paralléloèdres primitives. J Reine Angew Math 134:198–287

    Google Scholar 

  47. Brostow W et al (1998) Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials. Physical Review B 57:13448

    CAS  Google Scholar 

  48. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276

    CAS  Google Scholar 

  49. Nelmes RJ, Loveday JS, Allan DR, Besson JM, Hamel G, Grima P, Hull S (1993) Neutron-and x-ray-diffraction measurements of the bulk modulus of boron. Phys Rev B 47:7668–7673

    CAS  Google Scholar 

  50. Zhang B, Wu L, Li Z (2017) Predicted structural evolution and detailed insight into configuration correlation, mechanical properties of silicon–boron binary compounds. RSC Adv 7:16109–16118

    CAS  Google Scholar 

  51. Zarechnaya EY, Dubrovinsky L, Dubrovinskaia N et al (2009) Superhard semiconducting optically transparent high pressure phase of boron. Phys Rev Lett 102:185501

    PubMed  Google Scholar 

  52. Jiang C, Lin Z, Zhang J, Zhao Y (2009) First-principles prediction of mechanical properties of gamma-boron. Appl Phys Lett 94:191906

    Google Scholar 

  53. Aydin S, Simsek M (2011) First-principles calculations of elemental crystalline boron phases under high pressure: Orthorhombic B28 and tetragonal B48. J Alloys Compd 509:5219–5229

    CAS  Google Scholar 

  54. Getmanskii IV, Minyaev RM, Koval VV, Minkin VI (2018) Quantum chemical modeling of solid-state B4X structures containing tetrahedral B4 units with X= B, C, Al, Si. Mendeleev Comm 28:173–175

    CAS  Google Scholar 

  55. Qin J, Nishiyama N, Ohfuji H, Shinmei T, Lei L, He D, Irifune T (2012) Polycrystalline γ-boron: as hard as polycrystalline cubic boron nitride. Scr Mater 67:257–260

    CAS  Google Scholar 

  56. Teter DM (1998) Computational alchemy: the search for new superhard materials. MRS Bull 23:22–27

    CAS  Google Scholar 

  57. Chen XQ, Niu H, Li D, Li Y (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–1281

    CAS  Google Scholar 

  58. Tian Y, Xu B, Zhao Z (2012) Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Met Hard Mater 33:93–106

    CAS  Google Scholar 

  59. Oganov AR, Chen J, Gatti C et al (2012) Ionic high-pressure form of elemental boron. Nature 457:863–867

    Google Scholar 

  60. Solozhenko VL, Kurakevych OO, Oganov AR (2008) On the hardness of a new boron phase, orthorhombic γ-B28. J Superhard Mater 30:428–429

    Google Scholar 

  61. Vaitheeswaran G, Kanchana V, Svane A, Delin A (2007) Elastic properties of MgCNi3—a superconducting perovskite. J Phys Condens Matter 19:326214

    Google Scholar 

  62. Frantsevich IN (1982) Elastic moduli of metals and ınsulators handbook. Naukova Dumka, Kiev

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Scientific and Technological Research Council of Turkey (TÜBİTAK) under MAG award 117M372. AÖK acknowledges partial financial support from YÖK 100/2000 and TÜBİTAK BİDEB 2211-C programs. We acknowledge the computing time provided by the TÜBİTAK High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Contributions

Ayşegül Özlem Çetin Karacaoğlan: investigation, validation, formal analysis, data curation, writing—original draft, and visualization. Murat Durandurdu: conceptualization, methodology, resources, supervision, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Murat Durandurdu.

Ethics declarations

Competing interests

The authors declare no known competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karacaoğlan, A.Ö.Ç., Durandurdu, M. Possible boron-rich amorphous silicon borides from ab initio simulations. J Mol Model 29, 92 (2023). https://doi.org/10.1007/s00894-023-05491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05491-x

Keywords

Navigation