Skip to main content
Log in

A DFT study on the structure activity relationship of the natural xanthotoxin-based pharmaceutical cocrystals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract   

In this work, the pharmaceutical cocrystals xanthotoxin-para-aminobenzoic acid (XT-PABA) and xanthotoxin-oxalic acid (XT-OA) were systematically investigated in the gas and water phases by using the quantum chemical approach. The weak intermolecular interactions have been estimated and the O1…H4 (O1…H5) intermolecular hydrogen bond (IHB) with moderate intensity and partial covalent natures was confirmed based on the computed structural parameters, topology analysis, and reduced density gradient (RDG) isosurfaces. The electrophilic and nucleophilic reactivities of different positions associated with intermolecular interactions in XT, PABA, and OA were predicted by plotting the molecular electrostatic potential (MESP) diagrams. The calculated natural bond orbital (NBO) population analysis has quantitatively unveiled the intrinsic reason for the variations in weak intermolecular interactions within XT-PABA and XT-OA cocrystals, from the gas phase to the water phase. Besides, the frontier molecular orbitals (FMOs), Fukui function, and various global reactivity descriptors were computed to measure the chemical reactivity of all the investigated molecular systems. The XT-PABA and XT-OA cocrystals explored in this work could be regarded as valuable exemplar systems to design and synthesize the high-efficiency pharmaceutical cocrystals in the experiment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Vishweshwar P, McMahon JA, Peterson ML, Hickey MB, Shattock TR, Zaworotko MJ (2005) Chem Commun 36:4601–4603

  2. Crawford DE, Porcheddu A, McCalmont AS, Delogu F, James SL, Colacino E (2020) ACS Sustainable Chem Eng 8:12230–12238

    Article  CAS  Google Scholar 

  3. Sarri B, Canonge R, Audier X, Lavastre V, Penarier G et al (2019) J Raman Spectrosc 50:1896–1904

    Article  CAS  Google Scholar 

  4. Patel S, Kaushal AM, Bansal AK (2006) Crit Rev Ther Drug Carrier Syst 23:1–65

    Article  CAS  Google Scholar 

  5. Biscaia IFB, Gomes SN, Bernardi LS, Oliveira PR (2021) Pharmaceutics 13:898

    Article  CAS  Google Scholar 

  6. MacEachern L, Kermanshahi-pour A, Mirmehrabi M (2020) Cryst Growth Des 20:6226–6244

    Article  CAS  Google Scholar 

  7. Wu CY, Benet LZ (2005) Pharm Res 22:11–23

    Article  CAS  Google Scholar 

  8. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H et al (2004) Mol Pharmaceutics 1:85–96

    Article  CAS  Google Scholar 

  9. Blagden N, de Matas M, Gavan PT, York P (2007) Adv Drug Delivery Rev 59:617–630

    Article  CAS  Google Scholar 

  10. Qiao N, Li MZ, Schlindwein W, Malek N, Davies A, Trappitt G (2011) Int J Pharm 419:1–11

    Article  CAS  Google Scholar 

  11. Guo MS, Sun XJ, Chen JH, Cai T (2021) Acta Pharm Sin B 11:2537–2564

    Article  CAS  Google Scholar 

  12. Liu YJ, Yang F, Zhao XH, Wang SY, Yang QL, Zhang XX (2022) Pharmaceutics 14:94

    Article  CAS  Google Scholar 

  13. Rossi F, Cerreia Vioglio P, Bordignon S, Giorgio V, Nervi C et al (2018) Cryst Growth Des 18:2225–2233

    Article  CAS  Google Scholar 

  14. Srivastava K, Tandon P, Sinha K, Srivastava A, Wang J (2019) Spectrochim Acta, Part A 216:7–14

    Article  CAS  Google Scholar 

  15. Guo R, Tao J, Duan XH, Wu C, Li HZ (2020) J Mol Model 26:148

    Article  CAS  Google Scholar 

  16. Wu XW, Liu ZC, Zhu WH (2020) J Phys Chem C 124:25–36

    Article  CAS  Google Scholar 

  17. Wu HN, Sun YJ, Sun LJ, Wang LW, Zhang XT, Hu WP (2021) Chin Chem Lett 32:3007–3010

    Article  CAS  Google Scholar 

  18. Mahalakshmi P, Balraj V, Murugasen P, Vinitha G, Ragavendran V (2022) J Mol Struct 1247:131362

  19. Lin H, Zhu SG, Li HZ, Peng XH (2013) J Mol Struct 1048:339–348

    Article  CAS  Google Scholar 

  20. Ding X, Gou RJ, Ren FD, Liu F, Zhang SH, Gao HF (2016) Int J Quantum Chem 116:88–96

    Article  CAS  Google Scholar 

  21. Barbas R, Font-Bardia M, Frontera A, Prohens R (2022) Cryst Growth Des 22:590–597

  22. Chen JY, Wu H, Guo CY, Zhu B, Ren GB (2019) Int J Pharm 572:118776

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams DF, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16. Gaussian Inc, Wallingford, CT, USA

    Google Scholar 

  24. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  25. Chai J, Mu XJ, Li J, Zhu LX, Zhai KP et al (2020) Spectrochim Acta, Part A 229:117858

    Article  CAS  Google Scholar 

  26. Zhao GJ, Shi W, Yang YF, Ding Y, Li YQ (2021) J Phys Chem A 125:2743–2750

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  28. Sun CF, Zhao HF, Liu XC, Yin H, Shi Y (2018) Org Chem Front 5:3435–3442

    Article  CAS  Google Scholar 

  29. Scalmani G, Frisch MJ (2010) J Chem Phys 132:114110

    Article  Google Scholar 

  30. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  32. Gomez-Pineda LE, Pina-Luis GE, Cortes-Romero CM, Palomar-Pardave ME, Rosquete-Pina GA et al (2010) Molecules 15:4017–4032

    Article  CAS  Google Scholar 

  33. Rajan VK, Muraleedharan K (2017) Food Chem 220:93–99

    Article  CAS  Google Scholar 

  34. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press

  35. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  36. Jia LF, Wang F, Liu YF (2018) Org Electron 57:292–297

    Article  CAS  Google Scholar 

  37. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  38. Sun CF, Zhang X, Diao LH, Cao BF, Yin H, Shi Y (2020) J Lumin 225:117329

    Article  CAS  Google Scholar 

  39. Perera MD, Desper J, Sinha AS, Aakeroy CB (2016) CrystEngComm 18:8631–8636

    Article  CAS  Google Scholar 

  40. Shweta KE, Tandon P, Maurya R, Kumar P (2019) J Mol Struct 1183:100–106

    Article  CAS  Google Scholar 

  41. Domingo LR, Perez P, Saez JA (2013) RSC Adv 3:7520–7528

  42. Erylmaz S, Misir E (2021) J Mol Struct 1236:130363

    Article  Google Scholar 

  43. Costa RF, Oliveira MS, Aguiar ASN, Custodio JMF, Di Mascio P et al (2021) Curr Comput-Aided Drug Des 11:934

    CAS  Google Scholar 

  44. Wang LL, Yang FJ, Zhao XH, Li YZ (2019) Food Chem 275:339–345

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (2572019CG03), Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team), the 111 Project (B20088), and the National Training Program of Innovation and Entrepreneurship for Undergraduates (202010225140).

Author information

Authors and Affiliations

Authors

Contributions

Shaohang Yuan: conceptualization, data curation, writing–original draft. Zhiguang Yang: investigation, writing–review and editing. Changjiao Shang, Danyang Yang, Yuxuan Wang, and Haifei Qi: writing–review and editing. Chaofan Sun: conceptualization, methodology, software, writing–review and editing. Lingling Wang: conceptualization, methodology, investigation, writing–review and editing. Xiuhua Zhao: conceptualization, investigation, methodology, resources, writing–review and editing.

Corresponding authors

Correspondence to Lingling Wang or Xiuhua Zhao.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Yang, Z., Shang, C. et al. A DFT study on the structure activity relationship of the natural xanthotoxin-based pharmaceutical cocrystals. J Mol Model 28, 155 (2022). https://doi.org/10.1007/s00894-022-05152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05152-5

Keywords

Navigation