Skip to main content

Advertisement

Log in

Theoretical study on pentiptycene molecular brake: photoinduced isomerization and photoinduced electron transfer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The isomerization of the double bond plays an important role in the braking and de-braking of the light-controlled molecular brake. Therefore, the pentiptycene-type (Pp-type) light-controlled molecular brake system ((E)- and (Z)-4ʹ-pentiptycyl vinyl-[1,1ʹ-biphenyl]-4-carbonitrile) containing the C = C double bond was theoretically studied. Combining the 6-31G(d) basis set, the ωB97XD functional with dispersion correction was applied to implement the (E)-configuration and (Z)-configuration initial optimization. Next, using the 6-311G(d,p) basis set, the relaxed potential energy surface scans of the rotation angle were operated, and then the optimization calculations of the transition states at the extremum high points. Analyzing the stagnation points and the rotational transition states on the potential energy profiles, the rotation mechanism and basic energy parameters of the molecular brake were obtained. Then, the DFT computations at ground states and the TD-DFT computations of vertical excitation energy were put into practice at the accuracy of the def-TZVP basis set for the two configurations, and using the natural transition orbital (NTO) analyses combining the excitation energies and absorption spectra, the electronic transition characteristics and electron transfer properties of light-controlled molecular brake were studied. Afterwards, in order to investigate the photoinduced isomerization reaction, the C = C double bond was scanned on the relaxed potential energy surface, and the intermediates of the isomerization reaction were searched and analyzed; thus, the braking mechanism of the light-controlled molecular brake was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data and material of the current study are available from the corresponding author.

Code availability

Not applicable.

References

  1. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105(4):1281–1376

    Article  CAS  PubMed  Google Scholar 

  2. van Leeuwen T, Danowski W, Pizzolato SF, Štacko P, Wezenberg SJ, Feringa BL (2018) Braking of a light-driven molecular rotary motor by chemical stimuli. Chem Eur J 24(1):81–84

    Article  PubMed  CAS  Google Scholar 

  3. Roke D, Stuckhardt C, Danowski W, Wezenberg SJ, Feringa BL (2018) Light-gated rotation in a molecular motor functionalized with a dithienylethene switch. Angew Chem Int Ed Engl 57(33):10515–10519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kao CY, Lu HF, Chao I, Yang JS (2014) A rotary molecular motor gated by electrical energy. Org Lett 16(23):6100–6103

    Article  CAS  PubMed  Google Scholar 

  5. Kelly TR, Bowyer MC, Bhaskar KV, Bebbington D, Garcia A, Lang F, Kim MH, Jette MP (1994) A molecular brake. J Am Chem Soc 116(8):3657–3658

    Article  CAS  Google Scholar 

  6. Kelly TR (2001) Progress toward a rationally designed molecular motor. Acc Chem Res 34(6):514–522

    Article  CAS  PubMed  Google Scholar 

  7. Kelly TR, Sestelo JP, Tellitu I (1998) New molecular devices: in search of a molecular ratchet. J Org Chem 63(11):3655–3665

    Article  CAS  Google Scholar 

  8. Kelly TR, De Silva H, Silva RA (1999) Unidirectional rotary motion in a molecular system. Nature 401(6749):150–152

    Article  CAS  PubMed  Google Scholar 

  9. Kelly TR, Cai X, Damkaci F, Panicker SB, Tu B, Bushell SM, Cornella I, Piggott MJ, Salives R, Cavero M, Zhao Y, Jasmin S (2007) Progress toward a rationally designed, chemically powered rotary molecular motor. J Am Chem Soc 129(2):376–386

    Article  CAS  PubMed  Google Scholar 

  10. Wang G, Ma L, Xiang J, Wang Y, Chen X, Che Y, Jiang H (2015) 2,6-Pyridodicarboxamide-bridged triptycene molecular transmission devices: converting rotation to rocking vibration. J Org Chem 80(22):11302–11312

    Article  CAS  PubMed  Google Scholar 

  11. Toyota S, Kawahata K, Sugahara K, Wakamatsu K, Iwanaga T (2017) Triple and quadruple triptycene gears in rigid macrocyclic frameworks. Eur J Org Chem 2017(37):5696–5707

    Article  CAS  Google Scholar 

  12. Huang F, Wang G, Ma L, Wang Y, Chen X, Che Y, Jiang H (2017) Molecular spur gears based on a switchable quinquepyridine foldamer acting as a stator. J Org Chem 82(23):12106–12111

    Article  CAS  PubMed  Google Scholar 

  13. Frantz DK, Linden A, Baldridge KK, Siegel JS (2012) Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators. J Am Chem Soc 134(3):1528–1535

    Article  CAS  PubMed  Google Scholar 

  14. Nikitin K, Müller-Bunz H, Ortin Y, McGlinchey MJ (2009) A molecular paddlewheel with a sliding organometallic latch: syntheses, X-ray crystal structures and dynamic behaviour of [Cr(CO)36-2-(9-triptycyl)indene}], and of [M(CO)35-2-(9-triptycyl)indenyl}] (M=Mn, Re). Chem Eur J 15(8):1836–1843

    Article  CAS  PubMed  Google Scholar 

  15. Yang JS, Huang YT, Ho JH, Sun WT, Huang HH, Lin YC, Huang SJ, Huang SL, Lu HF, Chao I (2008) A pentiptycene-derived light-driven molecular brake. Org Lett 10(11):2279–2282

    Article  CAS  PubMed  Google Scholar 

  16. Sun WT, Huang YT, Huang GJ, Lu HF, Chao I, Huang SL, Huang SJ, Lin YC, Ho JH, Yang JS (2010) Pentiptycene-derived light-driven molecular brakes: substituent effects of the brake component. Chem Eur J 16(38):11594–11604

    Article  CAS  PubMed  Google Scholar 

  17. Sun WT, Huang GJ, Huang SL, Lin YC, Yang JS (2014) A light-gated molecular brake with antilock and fluorescence turn-on alarm functions: application of singlet-state adiabatic cistransphotoisomerization. J Org Chem 79(13):6321–6325

    Article  CAS  PubMed  Google Scholar 

  18. Sun WT, Huang SL, Yao HH, Chen IC, Lin YC, Yang JS (2012) An antilock molecular braking system. Org Lett 14(16):4154–4157

    Article  CAS  PubMed  Google Scholar 

  19. Tan WS, Chuang PY, Chen CH, Prabhakar C, Huang SJ, Huang SL, Liu YH, Lin YC, Peng SM, Yang JS (2015) Light-gated molecular brakes based on pentiptycene-incorporated azobenzenes. Chem Eur J 10(4):989–997

    CAS  Google Scholar 

  20. Yang CH, Prabhakar C, Huang SL, Lin YC, Tan WS, Misra NC, Sun WT, Yang JS (2011) A redox-gated slow-fast-stop molecular rotor. Org Lett 13(20):5632–5635

    Article  CAS  PubMed  Google Scholar 

  21. Kao CY, Lee IT, Prabhakar C, Yang JS (2014) Light- and redox-gated molecular brakes consisting of a pentiptycene rotor and an indole pad. J Chin Chem Soc 61(5):507–516

    Article  CAS  Google Scholar 

  22. Tseng T, Lu HF, Kao CY, Chiu CW, Chao I, Prabhakar C, Yang JS (2017) Redox-gated tristable molecular brakes of geared rotation. J Org Chem 82(10):5354–5366

    Article  CAS  PubMed  Google Scholar 

  23. Basheer MC, Oka Y, Mathews M, Tamaoki N (2010) A light-controlled molecular brake with complete on–off rotation. Chem Eur J 16(11):3489–3496

    Article  CAS  PubMed  Google Scholar 

  24. Iwasaki Y, Morisawa R, Yokojima S, Hasegawa H, Roussel C, Vanthuyne N, Caytan E, Kitagawa O (2018) N−C axially chiral anilines: electronic effect on barrier to rotation and a remote proton brake. Chem Eur J 24(17):4453–4458

    Article  CAS  PubMed  Google Scholar 

  25. Han S, Wu Y, Duan R, Jiang H, Wang Y (2019) Fluoride-controlled molecular brake systems. Asian J Org Chem 8(1):83–87

    Article  CAS  Google Scholar 

  26. Chen G, Zhao Y (2014) Redox-regulated rotary motion of a bis(9-triptycyl)-TTFV system. Org Lett 16(3):668–671

    Article  CAS  PubMed  Google Scholar 

  27. Nikitin K, Bothe C, Müller-Bunz H, Ortin Y, McGlinchey MJ (2012) High and low rotational barriers in metal tricarbonyl complexes of 2- and 3-indenyl anthracenes and triptycenes: rational design of molecular brakes. Organometallics 31(17):6183–6198

    Article  CAS  Google Scholar 

  28. Hirose K (2010) Molecular brake systems controlled by light and heat. J Incl Phenom Macro 68(1):1–24

    Article  CAS  Google Scholar 

  29. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL (2015) Artificial molecular machines. Chem Rev 115(18):10081–10206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  31. Dennington R, Keith T, Millam J (2009) Gauss View 5.0.8. Semichem, Inc.: Shawnee Mission, KS

  32. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14(1):33–38

    Article  CAS  Google Scholar 

  33. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    Article  CAS  Google Scholar 

  34. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. second row atoms, Z=11–18. J Chem Phys 72(10):5639–5648

    Article  CAS  Google Scholar 

  35. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3(2):214–218

    Article  CAS  Google Scholar 

  36. Lu T, Chen F (2012) Multiwfn: a multifunctional wave function analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  CAS  Google Scholar 

  37. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323

    Article  PubMed  CAS  Google Scholar 

  38. Lu T, Chen F (2012) Comparison of computational methods for atomic charges. Acta Phys Chim Sin 28(1):1–18

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT

  40. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Article  Google Scholar 

  41. Eliel EL, Wilen SH, Doyle MP (2001) Basic organic stereochemistry. John Wiley & Sons Inc., New York, pp 30–44

    Google Scholar 

  42. Wade LG Jr (2003) Organic chemistry, 5th edn. Pearson Education Inc., Upper Saddle River, pp 80–121

    Google Scholar 

  43. Solomons TWG, Fryhle CB (2004) Organic chemistry, 8th edn. John Wiley & Sons Inc., New York, pp 134–186

    Google Scholar 

  44. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6(9):2872–2887

    Article  CAS  PubMed  Google Scholar 

  45. Irikura KK, Johnson RD, Kacker RN, Kessel R (2009) Uncertainties in scaling factors for ab initio vibrational zero-point energies. J Chem Phys 130(11):114102

    Article  PubMed  CAS  Google Scholar 

  46. Johnson RD (2020) IINIST computational chemistry comparison and benchmark database: NIST standard reference database number 101, release 21 (August 2020), available at: http://cccbdb.nist.gov/. Accessed 30 April 2021

  47. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1):215–241

    Article  CAS  Google Scholar 

  48. Boese AD, Martin JML (2004) Development of density functionals for thermochemical kinetics. J Chem Phys 121(8):3405–3416

    Article  CAS  PubMed  Google Scholar 

  49. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57

    Article  CAS  Google Scholar 

  50. Chen YC, Sun WT, Lu HF, Chao I, Huang GJ, Lin YC, Huang SL, Huang HH, Lin YD, Yang JS (2011) A pentiptycene-derived molecular brake: photochemical EZ and electrochemical ZE switching of an enone module. Chem Eur J 17(4):1193–1200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hailong Wang: calculation, discussion, and writing

Qiuping Guan: discussion

Xueye Wang: theoretical guidance and discussion

Corresponding author

Correspondence to Xueye Wang.

Ethics declarations

Ethics approval

Approvals.

Consent to participate

We declared our agreement.

Consent for publication

We declared our agreement.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Guan, Q. & Wang, X. Theoretical study on pentiptycene molecular brake: photoinduced isomerization and photoinduced electron transfer. J Mol Model 27, 289 (2021). https://doi.org/10.1007/s00894-021-04900-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04900-3

Keywords

Navigation