Skip to main content
Log in

Investigation of optical properties for N- and F-doped triangular shaped carbon molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Optical properties of N- and F-doping triangular-shaped carbon molecules have been investigated in theory and experiment. The theoretical results showed that carbon molecules with impurity F and Cl have the same characters with pure carbon. Doping N into pure carbon molecule would change the optical rotation at 589 nm. For doping N replacing hydrogen atom structures (N-doping 1 and N-doping 2 molecules), the absorption spectra of them are similar to pure carbon molecule. However, for molecules with impurity N atom in benzene ring (N-doping 3 and N-doping 4 molecules), the peaks of wavelength of absorption spectra shift to long wavelength compared to that of pure carbon molecule. Moreover, the delocalization of molecular orbital (MO) is different from pure carbon molecule, which is caused by the impurity N changing the electrons distribution of benzene ring. We have calculated 3 without H and 4 without H molecules which are removing hydrogen atom in nitrogen atom from N-doping 3 and 4. 3 without H and 4 without H molecules have similar optical properties with pure carbon molecule. The results testified that the impurity N and F would not change the optical properties of carbon molecule if impurity did not change the delocalization of all benzene rings.

Graphical abstract

Optical properties of nitrogen- and fluorine-doping carbon molecules investigating in theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data and material are available for Journal of Molecular Modeling.

Code availability

Software is available.

References

  1. Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B (2017). Adv Mater 29:1603443

    Article  Google Scholar 

  2. Xu X, Ray R, Gu Y, Ploehn H, Gearheart L, Raker K, Scrivens A (2004). J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  3. Cao L, Wang X, Mezian J, Lu F, Wang H, Luo P, Lin Y, Harruff B, Veca L, Murray D, Xie S, Sun Y (2007). J Am Chem Soc 129:11318–11319

    Article  CAS  Google Scholar 

  4. Bhunia S, Saha A, Maity A, Ray S, Jana N (2013). Sci Report 3:1473

    Article  Google Scholar 

  5. Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Carbon, 2013, 421–428

  6. Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L (2014). Carbon 68:258–264

    Article  CAS  Google Scholar 

  7. Du J, Xu N, Fan J, Sun W, Peng X (2019). Small 15:1805087

    Article  Google Scholar 

  8. Singh R, Patel K, Mahapatra C, Kang M, Kim H (2016). ACS Appl Mater Interfaces 8:24433–24444

    Article  CAS  Google Scholar 

  9. Feng T, Ai X, An G, Yang P, Zhao Y (2016). ACS Nano 10:4410–4420

    Article  CAS  Google Scholar 

  10. Hettiarachchi S, Graham R, Mintz K, Zhou Y, Vanni S, Peng Z, Leblanc R (2019). Nanoscale 11:6192–6205

    Article  CAS  Google Scholar 

  11. Zeng Z, Zhang W, Arvapalli D, Bloom B, Sheardy A, Mabe T, Liu Y, Ji Z, Chevva H, Waldeck D, Wei J (2017). Phys Chem Chem Phys 19:20101–20109

    Article  CAS  Google Scholar 

  12. Tang Q, Zhu W, He B, Yang P (2017). ACS Nano 11:1540–1547

    Article  CAS  Google Scholar 

  13. Yuan F, Yuan T, Sui L, Wang Z, Xi Z, Li Y, Li X, Fan L, Tan Z, Chen A, Jin M, Yang S (2018). Nat Commun 9:2249

    Article  Google Scholar 

  14. Meng W, Bai X, Wang B, Liu Z, Lu S, Yang B (2019). Energy Environ Mater 2:172–192

    Article  CAS  Google Scholar 

  15. Li W, Wei Z, Wang B, Liu Y, Song H, Tang Z, Yang B, Lu S (2020). Mater Chem Front 4:277–284

    Article  CAS  Google Scholar 

  16. Tong L, Wang X, Chen Z, Liang Y, Yang Y, Gao W, Liu Z, Tang B (2020). Anal Chem 92:6430–6436

    Article  CAS  Google Scholar 

  17. Liu Y, Gou H, Huang X, Zhang G, Xi K, Jia X (2020). Nanoscale 12:1589

    Article  CAS  Google Scholar 

  18. Talite M, Huang H, Cai K, Capinig Co K, Santoso P, Chang S, Chou W, Yuan C (2020) The. J Phys Chem Lett 11:567–573

    Article  CAS  Google Scholar 

  19. Shen C, Lou Q, Zang J, Liu K, Qu S, Dong L, Shan C (2020). Adv Sci:1903525

  20. Li D, Jing P, Sun L, An Y, Shan X, Lu X, Zhou D, Han D, Shen D, Zhai Y, Qu S, Zboril R, Rogach A (2018). Adv Mater 30:1705913

    Article  Google Scholar 

  21. Liu H, Yang J, Li Z, Xiao L, Aryee A, Sun Y, Yang R, Meng H, Qu L, Zhang X (2019). Anal Chem 91:9259–9265

    Article  CAS  Google Scholar 

  22. Barman B, Nagao T, Nanda K (2020). Appl Surf Sci 510:145405

    Article  Google Scholar 

  23. Wu S, Zhou R, Chen H, Zhang J, Wu P (2020). Nanoscale 12:5543

    Article  CAS  Google Scholar 

  24. Ma C, Yin C, Fan Y, Yang X, Zhou X (2019). J Mater Sci 54:9372–9384

    Article  CAS  Google Scholar 

  25. Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H (2015). Angew Chem Int Ed 54:5360–5363

    Article  CAS  Google Scholar 

  26. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad T, Zhao P, Yu Z, Li N (2016). J Mater Chem B 4:7204

    Article  CAS  Google Scholar 

  27. L. Jiang, H. Ding, M. Xu, X. Hu, S. Li, M. Zhang, Q. Zhang, Q. Wang, S. Lu, Y. Tian, H, Bi, Small, 2020, 2000680

  28. Chattaraj P, Sarkar U, Roy D (2006). Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  29. P. Chattaraj, B. Maiti, U. Sarkar, the J Phys Chem A, 2003, 107, 25

  30. Roy D, Parthasarathi R, Padmanabhan J, Sarkar U, Subramanian V, Chattaraj P (2006). J Phys Chem A 110:1084–1093

    Article  CAS  Google Scholar 

  31. Sarkar U, Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj P (2006). J Mol Struct 758:119–125

    Article  CAS  Google Scholar 

  32. Paul D, Deb J, Sarkar U (2020). ChemistrySelect 5:6987–6999

    Article  CAS  Google Scholar 

  33. Deb J, Paul D, Sarkar U, Ayers P (2018). J Mol Model 24:249

    Article  Google Scholar 

  34. Pegu D, Deb J, Saha S, Paul M, Sarkar U (2018). J Mol Struct 1160:167–176

    Article  CAS  Google Scholar 

  35. A. Sheardy, D. Arvapalli, J. Wei, the Journal of Physical Chemistry C, 2020, 124, 4684–4692

  36. Strauss V, Margraf J, Dolle C, Butz B, Nacken T, Walter J, Bauer W, Peukert W, Spiecker E, Clark T, Guldi D (2014). J Am Chem Soc 136:17308–17316

    Article  CAS  Google Scholar 

  37. Li S, Li Y, Cao J, Zhu J, Fan L, Li X (2014). Anal Chem 86:10201–10207

    Article  CAS  Google Scholar 

  38. Jin S, Kim D, Jun G, Hong S, Jeon S (2013). ACS Nano 7:1239–1245

    Article  CAS  Google Scholar 

  39. Mombru D, Romero M, Faccio R, Mombru W (2017) The. J Phys Chem C 121:16576–16583

    Article  CAS  Google Scholar 

  40. D. Mombru, M. Romero, R. Faccio, W. Mombru, Physica E: Low-dimensional Systems and Nanostructures, 2019, 113, 130–136

  41. M.J. Frisch et al. GAUSSIAN 03, Revision D.01; Gaussian, Inc., Wallingford, CT, 2004

  42. GaussView 4.1.2, Roy Dennington II, Todd Keith and John Millam, Semichem, Inc., Shawnee Mission, KS, 2007

  43. Deb J, Paul D, Sarkar U (2020) The. J Phys Chem A 124:1312–1320

    Article  CAS  Google Scholar 

  44. Song H, Li Y, Shang L, Tang Z, Zhang T, Lu S (2020). Nano Energy 72:104730

    Article  CAS  Google Scholar 

  45. S. S. Yamijala, M. Mukhopadhyay, S. K. Pati, the Journal of Physical Chemistry C, 2015, 119, 12079–12087

  46. Saha S, Deb J, Sarkar U, Paul M (2017). Liq Cryst 44:2203–2221

    Article  CAS  Google Scholar 

  47. Bandyopadhyay P, Karmakar A, Deb J, Sarkar U, Seikh M (2020). Spectrochim Acta A Mol Biomol Spectrosc 228:117828

    Article  Google Scholar 

  48. Pegu D, Deb J, Alsenoy C, Sarkar U (2017). Spectrosc Lett 50:232–243

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of China (Yiping Cui, No. 61535003), the Natural Science Foundation of China (Chunlei Wang, Haibao Shao and Shuhong Xu, Grant Nos. 61875037, 21875034, 61704093), and the Foundation of Jiangsu Province for Outstanding Young Teachers in University (Shuhong Xu, Grant No. BK20180064).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Shuhong Xu, Linfeng Tan, and Fan Liu. Analysis were performed by Yiping Cui, Chunlei Wang, and Rong Zhang. The first draft of the manuscript was written by Shuhong Xu, Yiping Cui, Chunlei Wang, and Rong Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chunlei Wang or Rong Zhang.

Ethics declarations

Ethics approval

There is no risk for human and environment.

Consent to participate

None.

Consent for publication

None.

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Tan, L., Liu, F. et al. Investigation of optical properties for N- and F-doped triangular shaped carbon molecules. J Mol Model 27, 154 (2021). https://doi.org/10.1007/s00894-021-04758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04758-5

Keywords

Navigation