Skip to main content
Log in

Cage-like La4B24 and Core-Shell La4B290/+/− : perfect spherically aromatic tetrahedral metallo-borospherenes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cage-like and core-shell metallo-borospherenes exhibit interesting structures and bonding. Based on extensive global searches and first-principles theory calculations, we predict herein the perfect tetrahedral cage-like Td La4B24 (1) and core-shell Td La4B29 (2), Td La4B29+ (3), and Td La4B29 (4) which all possess the same geometrical symmetry as their carbon fullerene counterpart Td C28, with four equivalent interconnected B6 triangles on the cage surface and four nona-coordinate La centers in four conjoined η9-B9 rings. In these tetra-La-doped boron complexes, La4[B@B4@B24]0/+/− (2/3/4) in the structural motif of 1 + 4 + 28 contain a B-centered tetrahedral Td B@B4 core in a La-decorated tetrahedral La4B24 shell, with the negatively charged tetra-coordinate B at the center being the boron analog of tetrahedral C in Td CH4 (B ~ C). Detailed orbital and bonding analyses indicate that these Td lanthanide boride complexes are spherically aromatic in nature with a universal La--B9 (d-p) σ and (d-p) δ coordination bonding pattern. The IR, Raman, and UV-Vis or photoelectron spectra of these novel metallo-borospherenes are computationally simulated to facilitate their spectral characterizations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cotton FA, Wilkinson G, Murrillo CA, Bochmann M, Advanced Inorganic Chemistry, Wiley, New York, 6th edn, 1999, p. 1355, ISBN 0-471-19957-5

  2. Wang LS (2016) Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 35:69–142. https://doi.org/10.1080/0144235X.2016.1147816

    Article  CAS  Google Scholar 

  3. Jian T, Chen XN, Li SD, Boldyrev AI, Li J, Wang LS (2019) Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 48:3550–3591. https://doi.org/10.1039/c9cs00233b

    Article  CAS  PubMed  Google Scholar 

  4. Chen Q, Li WL, Zhao YF, Zhang SY, Hu HS, Bai H, Li HR, Tian WJ, Lu HG, Zhai HJ, Li SD, Li J, Wang LS (2015) Experimental and theoretical evidence of an axially chiral Borospherene. ACS Nano 9:754–760. https://doi.org/10.1021/nn506262c

    Article  CAS  PubMed  Google Scholar 

  5. Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat. Chem. 6:727–731. https://doi.org/10.1038/nchem.1999

    Article  CAS  PubMed  Google Scholar 

  6. Bai H, Chen TT, Chen Q, Zhao XY, Zhang YY, Chen WJ, Li WL, Cheung LF, Bai B, Cavanagh J, Huang W, Li SD, Li J, Wang LS (2019) Planar B41 and B42 clusters with double-hexagonal vacancies. Nanoscale 11:23286–23295. https://doi.org/10.1039/C9NR09522E

    Article  CAS  PubMed  Google Scholar 

  7. Wang YJ, Zhao YF, Li WL, Jian T, Chen Q, You XR, Ou T, Zhao XY, Zhai HJ, Li SD, Li J, Wang LS (2016) Observation and characterization of the smallest borospherene, B28 and B28. J. Chem. Phys. 144:064307. https://doi.org/10.1063/1.4941380

    Article  CAS  PubMed  Google Scholar 

  8. Li HR, Jian T, Li WL, Miao CQ, Wang YJ, Chen Q, Luo XM, Wang K, Zhai HJ, Li SD, Wang LS (2016) Competition between quasi-planar and cage-like structures in the B29 cluster: photoelectron spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 18:29147–29155. https://doi.org/10.1039/C6CP05420J

    Article  CAS  PubMed  Google Scholar 

  9. Bai H, Chen Q, Zhai HJ, Li SD (2015) Endohedral and Exohedral Metalloborospherenes: M@B40 (M=Ca, Sr) and M&B40 (M=Be, Mg). Angew. Chem. Int. Ed. 54:941–945. https://doi.org/10.1002/anie.201408738

  10. Li HR, Liu H, Tian XX, Zan WY, Mu YW, Lu HG, Li J, Wang YK, Li SD (2017) Structural transition in metal-centered boron clusters: from tubular molecular rotors Ta@B21 and Ta@B22+ to cage-like endohedral metalloborospherene Ta@B22. Phys. Chem. Chem. Phys. 19:27025–27030. https://doi.org/10.1039/C7CP05179D

  11. Yu TR, Gao Y, Xu DX, Wang ZG (2018) Actinide endohedral boron clusters: a closed-shell electronic structure of U@B40. Nano Res. 11:354. https://doi.org/10.1007/s12274-017-1637-9

    Article  CAS  Google Scholar 

  12. Oger E, Crawford NRM, Kelting R, Weis P, Kappes MM, Ahlrichs R (2007) Boron cluster Cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46:8503–8506. https://doi.org/10.1002/anie.200701915

    Article  CAS  Google Scholar 

  13. Sai LW, Wu X, Gao N, Zhao JJ, King RB (2017) Boron clusters with 46, 48, and 50 atoms: competition among the core–shell, bilayer and quasi-planar structures. Nanoscale 9:13905–13909. https://doi.org/10.1039/C7NR02399E

    Article  CAS  PubMed  Google Scholar 

  14. Pei L, Ma YY, Yan M, Zhang M, Yuan RN, Chen Q, Zan WY, Mu YW, Li SD (2020) Bilayer B54, B60, and B62 clusters in a universal structural pattern. Eur. J. Inorg. Chem. 34:3296–3301. https://doi.org/10.1002/ejic.202000473

    Article  CAS  Google Scholar 

  15. Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2011) Aromatic metal-centered monocyclic boron rings: Co©B8 and Ru©B9. Angew. Chem. Int. Ed. 50:9334–9337. https://doi.org/10.1002/ange.201104166

  16. Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI (2012) Observation of the highest coordination number in planar species: Decacoordinated Ta©B10 and Nb©B10 anions. Angew. Chem. Int. Ed. 51:2101–2105. https://doi.org/10.1002/ange.201107880

  17. Jian T, Li WL, Popov IA, Lopez GV, Chen X, Boldyrev AI, Li J, Wang LS (2016) Manganese-centered tubular boron cluster – MnB16: a new class of transition-metal molecules. J. Chem. Phys. 144:154310. https://doi.org/10.1063/1.4946796

    Article  CAS  PubMed  Google Scholar 

  18. Popov IA, Jian T, Lopez GV, Boldyrev AI, Wang LS (2015) Cobalt-centred boron molecular drums with the highest coordination number in the CoB16 cluster. Nat. Commun. 6:8654. https://doi.org/10.1038/ncomms9654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jian T, Li WL, Chen X, Chen TT, Lopez GV, Li J, Wang LS (2016) Competition between drum and quasi-planar structures in RhB18: motifs for metallo-boronanotubes and metallo-borophenes. Chem. Sci. 7:7020–7027. https://doi.org/10.1039/C6SC02623K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li WL, Jian T, Chen X, Li HR, Chen TT, Luo XM, Li SD, Li J, Wang LS (2017) Observation of a metal-centered B2-Ta@B18 tubular molecular rotor and a perfect Ta@B20 boron drum with the record coordination number of twenty. Chem. Commun. 53:1587–1590. https://doi.org/10.1039/C6CC09570D

  21. Li WL, Chen TT, Xing DH, Chen X, Li J, Wang LS (2018) Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. U. S. A. 115:E6972–E6977. https://doi.org/10.1073/pnas.1806476115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen TT, Li WL, Li J, Wang LS (2019) [La(ηx-Bx)La] (x = 7–9): a new class of inverse sandwich complexes. Chem. Sci. 10:2534–2542. https://doi.org/10.1039/c8sc05443f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen TT, Li WL, Chen WJ, Li J, Wang LS (2019) La3B14: an inverse triple-decker lanthanide boron cluster. Chem. Commun. 55:7864–7867. https://doi.org/10.1039/c9cc03807h

    Article  CAS  Google Scholar 

  24. Chen TT, Li WL, Chen WJ, Yu XH, Dong XR, Li J, Wang LS (2020) Spherical trihedral metallo-borospherenes. Nat. Commun. 11:2766. https://doi.org/10.1038/s41467-020-16532-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu XQ, Chen Q, Tian XX, Mu YW, Lu HG, Li SD (2019) Predicting lanthanide boride inverse sandwich tubular molecular rotors with the smallest core–shell structure. Nanoscale 11:21311–21316. https://doi.org/10.1039/c9nr07284e

    Article  CAS  PubMed  Google Scholar 

  26. Zhao XY, Yan M, Wei ZH, Li SD (2020) Donor–acceptor duality of the transition-metal-like B2 core in core–shell-like metallo-borospherenes La3&[B2@B17] and La3&[B2@B18]. RSC Adv. 10:34225–34230. https://doi.org/10.1039/d0ra06769e

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhao XY, Yan M, Li SD (2020) From inverse sandwich Ta2B7+ and Ta2B8 to spherical trihedral Ta3B12: prediction of the smallest metallo-borospherene. RSC Adv. 10:29320–29325. https://doi.org/10.1039/d0ra05570k

    Article  CAS  Google Scholar 

  28. Gao Y, Zeng XC (2005) M4@Si28 (M=Al, Ga): metal-encapsulated tetrahedral silicon fullerene. J. Chem. Phys. 123:204325. https://doi.org/10.1063/1.2121568

    Article  CAS  PubMed  Google Scholar 

  29. Guo T, Diener Chai M, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Science Uranium Stabilization of C28 : A Tetravalent Fullerene. 257: 1661–1664. https://doi.org/10.1126/science.257.5077.1661

  30. Chen X, Zhao YF, Zhang YY, Li J (2019) TGMin: an efficient global minimum searching program for free and surface-supported clusters. J. Comput. Chem. 40:1105–1112. https://doi.org/10.1002/jcc.25649

    Article  CAS  PubMed  Google Scholar 

  31. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  32. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: non-empirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401. https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  PubMed  Google Scholar 

  33. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72: 650. https://doi.org/10.1063/1.438955

  34. Feller D (1996) The role of databases in support of computational chemistry calculations. J. Comput. Chem. 17:1571–1586. https://doi.org/10.1002/(SICI)1096-987X

    Article  CAS  Google Scholar 

  35. Schuchardt L, Didier B, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 47:1045–1052. https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

  37. Čížek J (1969) On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys. 14:35–89. https://doi.org/10.1002/9780470143599.ch2

    Article  Google Scholar 

  38. Purvis III GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 76:1910. https://doi.org/10.1063/1.443164

    Article  CAS  Google Scholar 

  39. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157: 479-483. Https:// doi.org/157.1989/479

  40. Werner HJ, et al., Molpro, version 2012.1

  41. Tkachenko NV, Boldyrev AI (2019) Chemical bonding analysis of excited states using the adaptive natural density partitioning method. Phys. Chem. Chem. Phys. 21:9590–9596. https://doi.org/10.1039/c9cp00379g

    Article  CAS  PubMed  Google Scholar 

  42. Glendening PED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F. NBO 6.0, 2013

  43. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167:103–128. https://doi.org/10.1016/j.cpc.2004.12.014

    Article  CAS  Google Scholar 

  44. Alexandrova AN, Birch KA, Boldyrev AI (2003) Flattening the B6H62− octahedron Ab initio prediction of a new family of planar all-boron aromatic molecules. J. Am. Chem. Soc. 125:10786–10787. https://doi.org/10.1021/ja0361906

    Article  CAS  PubMed  Google Scholar 

  45. Schleyer PR, Maerker C (1996) Nucleus-independent chemical shifts: a simple and efficient Aromaticity probe. J. Am. Chem. Soc. 118:6317–6318. https://doi.org/10.1021/JA960582D

    Article  CAS  PubMed  Google Scholar 

  46. Ciuparu D, Klie R, Zhu YM, Pfefferle L (2004) Synthesis of pure boron Single-Wall nanotubes. J. Phys. Chem. B 108:3967–3969. https://doi.org/10.1021/jp049301b

    Article  CAS  Google Scholar 

Download references

Availability of data and material

All the data are available online.

Code availability

N/A

Funding

The work was supported by the National Natural Science Foundation of China (21720102006 and 21973057 to S.-D. Li).

Author information

Authors and Affiliations

Authors

Contributions

Z. H. Wei and S. D. Li designed the project and X. Q. Lu and C. Y. Gao performed the calculations. All the authors participate in the discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Zhihong Wei or Si-Dian Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, XQ., Gao, CY., Wei, Z. et al. Cage-like La4B24 and Core-Shell La4B290/+/− : perfect spherically aromatic tetrahedral metallo-borospherenes. J Mol Model 27, 130 (2021). https://doi.org/10.1007/s00894-021-04739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04739-8

Keywords

Navigation