Skip to main content
Log in

Vibrational, thermodynamic, and dielectric properties of ε-CL-20: first-principles calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The DFT theory is used to investigate the vibration forms of ε-CL-20 by discussing the phonon DOS and infrared and Raman spectra. By observing them, the detailed vibration forms can be obtained, and the vibrations are different in the different regions. Our calculated vibrational results are consistent with previous data. In order to deeply comprehend CL-20, we also investigate the thermodynamic properties, finding that entropy, enthalpy, Debye temperature, and heat capacity are increased with the rising temperature and the vibrational free energy decreases with the increasing temperature. The εxx, εyy, and εzz are similar, which reflects the small anisotropy among [100], [010], and [001]. Moreover, it can be noticed that the major contribution for static dielectric constants originates from the electronic contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, & D. M. Hoffman, Propellants, explosives, pyrotechnics 22 (1997) 249

  2. J. P. Agrawal, Progress in energy and combustion science 24 (1998) 1

    Article  CAS  Google Scholar 

  3. Nielsen AT, ChaWn AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, FlippenAnderson JL (1998). Tetrahedron 54:11793

    Article  CAS  Google Scholar 

  4. Nielsen AT, Nissan PA (1986). Part 5:6692

  5. M. Frances Foltz, L. C. Coon, F. Garcia, A. L. Nichols, Propellants, explosives pyrotechnics 19 (1994) 19

    Article  CAS  Google Scholar 

  6. M. Frances. Foltz, propellants, explosives, pyrotechnics 19 (1994) 63

  7. Russell TP, Miller PJ, Piermarini GJ, Block S (1993). J Phys Chem 97:1993

    Article  CAS  Google Scholar 

  8. Goede P, Latypov NV, Östmark H (2004) Propellants, explosives, pyrotechnics: an international journal dealing with scientific and technological aspects of energetic materials 29:205

  9. Kholod Y, Okovytyy S, Kuramshin G, Qasim M, Gorb L, Leszczynski J (2007). J Mol Struct 843:14

    Article  CAS  Google Scholar 

  10. Ghosh M, Venkatesan V, Sikder N, Sikder AK (2013). Cent Eur J Energ Mater 10:419

    Google Scholar 

  11. Song XL, Yi W (2018) A Chongwei AIP advances 8:065009

  12. Segall MD, Lindan PJD (2002). J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  13. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  14. Kresse G, Furthmüller J (1996). Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  15. Fischer TH, Almlof J (1992). J Phys Chem 96:9768

    Article  CAS  Google Scholar 

  16. Xu XJ, Zhu WH, Xiao HM (2007). J Phys Chem B 111:2090

    Article  CAS  Google Scholar 

  17. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006). J Phys Chem B 110:7203

    Article  CAS  Google Scholar 

  18. Liu H, Zhao J, Ji G, Wei D, Gong Z (2006). Phys Lett A 358:63

    Article  CAS  Google Scholar 

  19. Qasim M, Fredrickson H, Honea P, Furey J, Leszczynski J, Okovytyy S, Szecsody J, Kholod Y (2005). SAR QSAR Environ Res 16:495

    Article  CAS  Google Scholar 

  20. Zhao D, Zhou L, Du Y, Wang A, Peng Y, Kong Y, Sha C, Quyang Y, Zhang W (2011). Calphad 35:284

    Article  CAS  Google Scholar 

  21. Lee C, Gonze X (1995). Phys Rev B 51:8610

    Article  CAS  Google Scholar 

  22. Blanco MA, Francisco E, Luaña V (2004) Computer physics communications 158:57

    Article  CAS  Google Scholar 

  23. Debye P (1912). Ann Phys 39:789

    Article  CAS  Google Scholar 

  24. Irikura KK (2007). J Phys Chem Ref Data 36:389

    Article  CAS  Google Scholar 

  25. Gonze X, Lee C (1997). Phys Rev B 55:10355

    Article  CAS  Google Scholar 

  26. Lee C, Ghosez P, Gonze X (1994). Phys Rev B 50:13379

    Article  CAS  Google Scholar 

  27. Zhao XY, Vanderbilt D (2002). Phys Rev B 65:233106

    Article  Google Scholar 

  28. Liu H, Liu ZT, Ren J, Liu QJ (2017). Solid State Commun 251:43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Hong or Qi-Jun Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, D., Zeng, W., Qin, H. et al. Vibrational, thermodynamic, and dielectric properties of ε-CL-20: first-principles calculations. J Mol Model 26, 47 (2020). https://doi.org/10.1007/s00894-020-4311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4311-1

Keywords

Navigation