Skip to main content
Log in

819 molecular knot: a theoretical analysis of the electronic structure using an ONIOM approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present work analyzes the electronic and molecular properties of the 819 ([Fe(II)4]C) and metal-free knot ligand complexes obtained from X-ray crystal structure of molecular 819 knot complex [Fe(II)4(PF6)7]C. The studies were theoretically investigated by means of DFT, TD-DFT, and ONIOM approaches. Basis sets functions from all-electron calculations for bromine, iodine, and iron atoms were adapted to be used along with relativistic effective core potential, while H, C, N, O, and C atoms were described by Pople basis sets. The diffusion effect of halogen into the 819 cavity, UV-Vis, and Electronic Circular Dichroism spectra were also analyzed. All calculations were performed using solvent effect through the SCRF/SMD model and dispersion effects by Grimme methodology. The value of mean separation distance between C and iron atom (7.218 Å) is in good agreement with X-ray experimental result (7.258 Å). Circular dichroism spectrum of metal-free 819 knot ligand was calculated and the maximum absorption in 262 nm, Δ𝜖 obtained was 67 L mol− 1 cm− 1. These results are qualitatively similar to those obtained experimentally, 295 nm and 80 L mol− 1 cm− 1, respectively. In this study, we report the electronic and molecular properties of the 819 ([Fe(II)4]Cl and metal-free knot ligand complexes and compare with the results obtained from X-ray crystallographic data of 819 knot complex [Fe(II)4(PF6)7]Cl. The 819 knot were investigated by means of DFT, TD-DFT, and ONIOM approaches. Basis sets functions from all-electron for Br, I, and Fe atoms were adapted to be used along with relativistic effective core potential, while H, C, N, O, and Cl atoms were described by Pople basis sets. The objective was to understand the stability of the 819 knot as a function of the substitution of the central halogen atom (Cl), and the signal in the circular dichroism spectra. From the equilibrium geometries, we have obtained good results for values of the bond distance, bond angle, and dihedral angle along the molecular structure when these variables are compared with the results obtained from X-ray data. The diffusion effect of halogen into the 819 cavity, UV-Vis, and Electronic Circular Dichroism spectra was also analyzed. Circular dichroism spectrum of metal-free 819 knot ligand was calculated, and the maximum absorption is in good agreement with the experimental value. The ONIOM methodology combined with the relativistic effective core potential and the atomic basis sets provide good results for systems with a complex topology, such as knots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wasserman S, Cozzarelli N (1986) . Science 232:951–960

    Article  CAS  Google Scholar 

  2. Orlandini E (2018) . J Phys A Math Theor 51:053001–053111

    Article  Google Scholar 

  3. Postic G, Gracy J, Pėrin C, Chiche L, Gelly J-C (2017) . Nucleic Acids Res 46:D454–D458

    Article  Google Scholar 

  4. Adams C (2001) The knot book: An elementary introduction to the mathematical theory of knots. W.H Freeman, New York

    Google Scholar 

  5. Danon JJ, Krüger A, Leigh DA, Lemonnier J-F, Stephens AJ, Vitorica-Yrezabal IJ, Woltering SL (2017) . Science 355:159–162

    Article  CAS  Google Scholar 

  6. Fielden SDP, Leigh DA, Woltering SL (2017) . Angew Chem Int Ed 129:11318–11347

    Article  Google Scholar 

  7. Zhang L, Lemonnier J-F, Acocella A, Calvaresi M, Zerbetto F, Leigh DA (2019) . P Nat A Sci 116:2452–2457

    Article  CAS  Google Scholar 

  8. Yeates TO, Norcross TS, King NP (2007) . Curr Opin Chem Biol 11:595–603

    Article  CAS  Google Scholar 

  9. Najafi S (2019) . Soft Matter 15:1916–1921

    Article  CAS  Google Scholar 

  10. Vologodskii AV, Cozzarelli NR (1994) . Annu Rev Biophys Biomol Struct 23:609–643

    Article  CAS  Google Scholar 

  11. Arai Y, Yasuda R, Akashi KI, Harada Y, Miyata H, Kinosita K, Itoh H (1999) . Nature 399:446–448

    Article  CAS  Google Scholar 

  12. Sluysmans D, Stoddart JF (2019) . Trends Chem 1:185–197

    Article  CAS  Google Scholar 

  13. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li H-B, Ding L, Morokuma K (2015) . Chem Rev 115:5678–5796

    Article  CAS  Google Scholar 

  14. Zhao Y, Truhlar DG (2007) . Theor Chem Acc 120:215–241

    Article  Google Scholar 

  15. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) . J Phys Chem A 117:12590–12600

    Article  CAS  Google Scholar 

  16. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) . J Chem Phys 126:144105–144125

    Article  Google Scholar 

  17. Wang C-W, Hui K, Chai J-D (2016) . J Chem Phys 145:204101–204115

    Article  Google Scholar 

  18. Jacquemin D, Perpète EA, Ciofini I, Adamo C (2010) . Theor Chem Acc 128:127–136

    Article  Google Scholar 

  19. Stewart JJP (2008) . J Mol Model 15:765–805

    Article  Google Scholar 

  20. de Andrade AM, Junior AC, de Lazaro SR (2016) . Curr Phys Chem 6:96–104

    Article  Google Scholar 

  21. Hehre WJ, Ditchfield R, Pople JA (2072) . J Chem Phys 56:2257–2261

    Article  Google Scholar 

  22. Lu X, Wei S, Wu C-ML, Ding N, Li S, Zhao L, Guo W (2011) . Int J Photoenergy 2011:1–11

    Article  Google Scholar 

  23. Stevens WJ, Basch H, Krauss M (1984) . J Chem Phys 81:6026–6033

    Article  Google Scholar 

  24. Marenich AV, Cramer CJ, Truhlar DG (2009) . J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  25. Grimme S, Ehrlich S, Goerigk L (2011) . J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  26. Frisch, MJ, Trucks, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, JR, Scalmani, G, Barone, V, Mennucci, B, Petersson, GA, Nakatsuji, H, Caricato, M, Li, X, Hratchian, HP, Izmaylov, AF, Bloino, J, Zheng, G, Sonnenberg, JL, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Vreven, T, Montgomery, Jr, JA, Peralta, JE, Ogliaro, F, Bearpark, M, Heyd, JJ, Brothers, E, Kudin, KN, Staroverov, VN, Kobayashi, R, Normand, J, Raghavachari, K, Rendell, A, Burant, JC, Iyengar, SS, Tomasi, J, Cossi, M, Rega, N, Millam, NJ, Klene, M, Knox, JE, Cross, JB, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, RE, Yazyev, O, Austin, AJ, Cammi, R, Pomelli, C, Ochterski, JW, Martin, RL, Morokuma, K, Zakrzewski, VG, Voth, G, Salvador, P, Dannenberg, JJ, Dapprich, S, Daniels, AD, Farkas, O, Foresman, JB, Ortiz, JV, Cioslowski, J, Fox, DJ (2016) Gaussian 16 (Revision A.03)

  27. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory. In: Theory and Applications of Computational Chemistry. Elsevier: Gordon Research Group at Iowa State University

  28. Kabsch W (1976) . Acta Crystallogr A 32:922–923

    Article  Google Scholar 

  29. Walker MW, Shao L, Volz RA (1991) . CVGIP Image Underst 54:358–367

    Article  Google Scholar 

  30. Bell EW, Zhang Y (2019) . J Cheminform 11:1–9

    Article  CAS  Google Scholar 

  31. Shannon RD (1976) . Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  32. Database of Ionic Radii - http://abulafia.mt.ic.ac.uk/shannon/ptable.php. Accessed 01 June 2020

  33. Schaftenaar G, Vlieg E, Vriend G (2017) . J Comput Aided Mol Des 31:789–800

    Article  CAS  Google Scholar 

  34. Sousa I, Heerdt G, Ximenes V, de Souza A, Morgon NH (2020) . J Braz Chem Soc 31:613–618

    CAS  Google Scholar 

  35. Laurent AD, Jacquemin D (2013) . Int J Quantum Chem 113:2019–2039

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by São Paulo State Research Support Foundation (FAPESP, grants 2013/08293-7 and 2015/22338-9), and the National Council for Scientific and Technological Development (CNPq, grants 303581/2018-2 and 305541/2017- 0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson H. Morgon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author contributions

NHM and ARS performed the computer simulation and analysis of data.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection: XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TEX 3.85 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgon, N.H., de Souza, A. 819 molecular knot: a theoretical analysis of the electronic structure using an ONIOM approach. J Mol Model 27, 39 (2021). https://doi.org/10.1007/s00894-020-04627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04627-7

Keywords

Navigation