Skip to main content

Advertisement

Log in

Fullerene-intercalated graphene nanocontainers for gas storage and sustained release

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are performed to investigate the storage capacity and sustained release of nitrogen (N2) in the graphene-based nanocontainers. Sandwiched graphene–fullerene composites (SGFC) composed of two parallel graphene sheets and intercalated fullerenes are constructed. The simulation results show that the mass density of N2 at the first layer is extremely high, due to the strong adsorption ability of graphene sheets. And N2 molecules at this adsorbed layer are thermodynamically stable. Furthermore, we analyze the storage efficiency of SGFC. In general, the gravimetric and volumetric capacities decrease with the increasing number of intercalated fullerenes. On the contrary, the stability of SGFC is enhanced by more intercalated fullerenes. We therefore make a compromise and propose that 1 fullerene per 5 nm2 graphene to build a SGFC, which is much effective to storage N2. We also verify the reversibility that N2 can sustainably release from the SGFC. Our results may provide insights into the design of graphene-based nanocomposites for gas storage and sustained release with excellent structural stability and high storage capacity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farzad S, Taghikhani V, Ghotbi C, Aminshahidi B, Lay EN (2007) Experimental and theoretical study of the effect of moisture on methane adsorption and desorption by activated carbon at 273.5 K. J. Nat. Gas Chem. 16:22

    CAS  Google Scholar 

  2. Shao X, Feng Z, Xue R, Ma C, Wang W, Peng X, Cao D (2011) Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads: preparation, measurements and simulation. AICHE J. 57:3042

    CAS  Google Scholar 

  3. Vekeman J, Faginas-Lago N, Lombardi A, Merás ASD, Cuesta IG, Rosi M (2019) Molecular dynamics of CH4/N2 mixtures on a flexible Graphene layer adsorption and selectivity case study. Front. Chem. 7:386

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mosher K, He J, Liu Y, Rupp E, Wilcox J (2013) Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 109-110:36

    CAS  Google Scholar 

  5. Wang W, Motuzas J, Zhao XS, Diniz da Costa JC (2019) 2D/3D assemblies of amine-functionalized graphene silica (templated) aerogel for enhanced CO2 sorption. ACS Appl. Mater. Interfaces 11:30391

    CAS  PubMed  Google Scholar 

  6. Cervellera VR, Albertí M, Huarte-Larrañaga F (2008) A molecular dynamics simulation of air adsorption in single-walled carbon nanotube bundles. Int. J. Quantum Chem. 108:1714

    CAS  Google Scholar 

  7. Cheng H, Cooper AC, Pez GP, Kostov MK, Piotrowski P, Stuart SJ (2005) Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Phys. Chem. B 109:3780

    CAS  PubMed  Google Scholar 

  8. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int. J. Hydrogen Energ. 27:193

    CAS  Google Scholar 

  9. Chakraborty B, Modak P, Banerjee S (2012) Hydrogen storage in yttrium-decorated single walled carbon nanotube. J. Phys. Chem. C 116:22502

    CAS  Google Scholar 

  10. Rubes M, Bludsky O (2009) DFT/CCSD(T) investigation of the interaction of molecular hydrogen with carbon nanostructures. Chemphyschem 10:1868

    CAS  PubMed  Google Scholar 

  11. Lugo G, Cuesta IG, Sanchez Marin J, Sanchez de Meras A (2016) MP2 study of physisorption of molecular hydrogen onto defective nanotubes: cooperative effect in Stone–Wales defects. J. Phys. Chem. A 120:4951

    CAS  PubMed  Google Scholar 

  12. Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem. Int. Ed. Engl. 48:7752

    CAS  PubMed  Google Scholar 

  13. Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J. Phys. Chem. Lett. 3:1746

    CAS  PubMed  Google Scholar 

  14. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett. 8:3498

    CAS  PubMed  Google Scholar 

  15. Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69:1

    CAS  Google Scholar 

  16. Zhang Y, Ren L, Wang S, Marathe A, Chaudhuri J, Li G (2011) Functionalization of graphene sheets through fullerene attachment. Mater. Chem. 21:5386

    CAS  Google Scholar 

  17. Spyrou K, Kang L, Diamanti EK, Gengler RY, Gournis D, Prato M, Rudolf P (2013) A novel route towards high quality fullerene-pillared graphene. Canbon 61:313

    CAS  Google Scholar 

  18. Yu D, Park K, Durstock M, Dai L (2011) Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J. Phys. Chem. Lett. 2:1113

    CAS  PubMed  Google Scholar 

  19. Kuc A, Zhechkov L, Patchkovskii S, Seifert G, Heine T (2007) Hydrogen sieving and storage in fullerene intercalated graphite. Nano Lett. 7:1

    CAS  PubMed  Google Scholar 

  20. Ozturk Z, Baykasoglu C, Kirca M (2016) Sandwiched graphene–fullerene composite: a novel 3-D nanostructured material for hydrogen storage. Int. J. Hydrogen Energ. 41:6403

    CAS  Google Scholar 

  21. Peng X, Cao D, Wang W (2010) Computational study on purification of CO2 from natural gas by C60 intercalated graphite. J. Phys. Chem. B 49:8787

    CAS  Google Scholar 

  22. Kumar R, Suresh VM, Maji TK, Rao CNR (2014) Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties. Chem. Commun. 50:2015

    CAS  Google Scholar 

  23. Cai J, Chen J, Zeng P, Pang Z, Kong X (2019) Molecular mechanisms of CO2 adsorption in diamine-cross-linked graphene oxide. Chem. Mater. 31:3729

    CAS  Google Scholar 

  24. Terzyk AP, Furmaniak S, Gauden PA, Kowalczyk P (2009) Fullerene-intercalated graphene nano-containers mechanism of argon adsorption and high-pressure CH4 and CO2 storage capacities. Adsorpt. Sci. Technol. 27:281

    CAS  Google Scholar 

  25. Yin YF, Mays T, McEnaney B (2000) Molecular simulations of hydrogen storage in carbon nanotube arrays. Langmuir 16:10521

    CAS  Google Scholar 

  26. Tylianakis E, Psofogiannakis GM, Froudakis GE (2010) Li-doped pillared graphene oxide: a Graphene-based nanostructured material for hydrogen storage. J. Phys. Chem. Lett. 1:2459

    CAS  Google Scholar 

  27. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188

    CAS  PubMed  Google Scholar 

  28. Salonen E, Lin S, Reid ML, Allegood M, Wang X, Rao AM, Vattulainen I, Ke PC (2008) Real-time translocation of fullerene reveals cell contraction. Small 4:1986

    CAS  PubMed  Google Scholar 

  29. Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114:10024

    CAS  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926

    CAS  Google Scholar 

  31. Berendsen HJC, Dvd S, Rv D (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91:43

    CAS  Google Scholar 

  32. Hess B, Kutzner C, Dvd S, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4:435

    CAS  PubMed  Google Scholar 

  33. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19

    Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103:8577

    CAS  Google Scholar 

  35. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089

    CAS  Google Scholar 

  36. Nosé S (2006) A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52:255

    Google Scholar 

  37. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31:1695

    CAS  Google Scholar 

  38. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52:7182

    CAS  Google Scholar 

  39. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13:952

    CAS  Google Scholar 

  40. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18:1463

    CAS  Google Scholar 

  41. Wang C, Li Z, Li J, Xiu P, Hu J, Fang H (2008) High density gas state at water/graphite interface studied by molecular dynamics simulation. Chinese Phys. B 17:2646

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875236, 61575178, 11574272, U1832150), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY18A040001), and Zhejiang Provincial Science and Technology Project (Grant No. LGN18C200017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junlang Chen or Songwei Zeng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, D., Wang, X., Zhou, G. et al. Fullerene-intercalated graphene nanocontainers for gas storage and sustained release. J Mol Model 26, 166 (2020). https://doi.org/10.1007/s00894-020-04417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04417-1

Keywords

Navigation