Skip to main content

Advertisement

Log in

A density functional theory exploration on the Zn catalyst for acetylene hydration

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The acetylene hydration method to produce acetaldehyde has been widely used for over 130 years; however, a detailed molecular-level understanding of the reaction mechanism is still lacking. In the present work, we systematically investigated the mechanisms of such reactions on ZnCl2, Zn(OH) Cl, and Zn(OH)2 catalysts through density functional theory (DFT) methods. The Fukui function, condensed Fukui function, and Hirshfeld charges enabled us to predict the active sites of the catalysts and acquire electron transfer information. From these data, we found that catalysts bearing hydroxyl groups exhibited relatively low adsorption performances compared with catalysts without this functionality. The calculations demonstrated that the three studied catalysts had three distinct reaction paths. For the Zn(OH)Cl and Zn(OH)2 catalysts, the reaction took place through a one-shift H2O molecule transfer route, avoiding higher energy barrier pathways. Interestingly, we found that the energy required for breaking the O–H bond in water determined the activation energy of the studied catalytic reactions. The activation barrier increased in the order Zn(OH)Cl ≈ Zn(OH)2 < ZnCl2. This trend suggests that Zn(OH)Cl and Zn(OH)2 are promising catalysts for the hydration of acetylene.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gladisch H (1969). Chem Ing Tech 41:204

    CAS  Google Scholar 

  2. Sobenina LN, Tomilin DN, Petrova OV, Mikhaleva AI, Trofimov BA (2013). Russ J Org Chem 49:356

    CAS  Google Scholar 

  3. Strauss G (1974). Chem Ing Tech. 46:132

    Google Scholar 

  4. Watts P, Wiles C (2007). Chem Commun:443

  5. Yao S, Nakayama A, Suzuki E (2001). Catal Today 71:219

    CAS  Google Scholar 

  6. Schröder V, Holtappels K (2009). Chem Ing Tech 81:177

    Google Scholar 

  7. Trotus IT, Zimmermann T, Schuth F (2014). Chem Rev 114:1761

    CAS  PubMed  Google Scholar 

  8. Wu X, He P, Wang X, Dai B (2017). Chem Eng J 309:172

    CAS  Google Scholar 

  9. Caro C, Thirunavukkarasu K, Anilkumar M, Shiju NR, Rothenberg G (2012). Adv Synth Catal 354:1327

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo-rong D, Xian-zhong Y, Jin C, Bao-zhu S, Ying-jie F (2017) Huaxue Gongye (Beijing, China) 35:47

  11. Idriss D, Hindermann PJ, Kiennemann B (1995). J Catal 155:219

    CAS  Google Scholar 

  12. Liu P, Hensen EJ (2013). J Am Chem Soc 135:14032

    CAS  PubMed  Google Scholar 

  13. Takei T, Iguchi N, Haruta M (2011). Catal Surv Jpn 15:80

    CAS  Google Scholar 

  14. Hintermann L, Labonne A (2007). Synthesis:2007

  15. Wu X-F, Bezier D, Darce C (2009). Adv Synth Catal 351:367

    CAS  Google Scholar 

  16. Budde WL, Dessy RE (1963). J Am Chem Soc 85:3964

    CAS  Google Scholar 

  17. Kutscheroff M, Bunsenges B (1881). Phys Chem 1540

  18. Kallo D, Onyestyak G (1987) Deactivation and stabilization of late transition metal zeolite catalysts for acetylene hydration. In: Delmon B, Froment GF (eds) Studies in Surface Science and Catalysis. Elsevier, Antwerp, p 605

    Google Scholar 

  19. Lazo ND, White JL, Munson EJ, Lambregts M, Haw JF (1990). J Am Chem Soc 112:4050

    CAS  Google Scholar 

  20. Nun P, Ramón RS, Gaillard S, Nolan SP (2011). J Organomet Chem 696:7

    CAS  Google Scholar 

  21. Yamase T, Kurozumi T (1984). Inorg Chim Acta 83:L25

    CAS  Google Scholar 

  22. Yang L, Chen H, Su R, Xu C, Dai B (2018). Catal Lett 148:3370

    CAS  Google Scholar 

  23. Chen Z-W, Ye D-N, Qian Y-P, Ye M, Liu L-X (2013). Tetrahedron 69:6116

    CAS  Google Scholar 

  24. Wang Q, Zhu M, Dai B, Zhang J (2019). Cat Sci Technol 9:981

    Google Scholar 

  25. Wang Q, Zhu M, Zhang H, Xu C, Dai B, Zhang J (2019). Catal Commun 120:33

    CAS  Google Scholar 

  26. Wang Q, Zhu M, Zhang H, Xu C, Dai B, Zhang J (2018). ChemistrySelect 3:9603

    CAS  Google Scholar 

  27. Arita AJ, Cantada J, Grotjahn DB, Cooksy AL (2013). Organometallics 32:6867

    CAS  Google Scholar 

  28. Najafian A, Cundari TR (2018). Polyhedron 154:114

    CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li H, Izmaylov A, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09. Gaussian Inc, Wallingford

  30. Andersson MP, Uvdal P (2005). J Phys Chem A 109:2937

    CAS  PubMed  Google Scholar 

  31. Becke AD (1992). J Chem Phys 96:2155

    CAS  Google Scholar 

  32. Becke AD (1992). J Chem Phys 97:9173

    CAS  Google Scholar 

  33. Becke AD (1993). J Chem Phys 98:5648

    CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    CAS  Google Scholar 

  35. Boys SF, Bernardi F (1970). Mol Phys 19:553

    CAS  Google Scholar 

  36. Fukui K (1981). Acc Chem Res 14:363

    CAS  Google Scholar 

  37. Fukui K (1970). J Chem Phys 74:4161

    CAS  Google Scholar 

  38. Gonzalez C, Schlegel HB (1989). J Chem Phys 90:2154

    CAS  Google Scholar 

  39. Gonzalez C, Schlegel HB (1990). J Phys Chem 94:5523

    CAS  Google Scholar 

  40. Parr RG, Yang W (1984). J Am Chem Soc 106:4049

    CAS  Google Scholar 

  41. Yang W, Mortier WJ (1986). J Am Chem Soc 108:5708

    CAS  PubMed  Google Scholar 

  42. Hirshfeld FL (1977). Theor Chim Acta 44:129

    CAS  Google Scholar 

  43. Lu T, Chen F (2012). J Comput Chem 33:580

    PubMed  Google Scholar 

  44. Fuentealba P, Pérez P, Contreras R (2000). J Chem Phys 113:2544

    CAS  Google Scholar 

  45. Ola’h J, Van Alsenoy C, Sannigrahi AB (2002). J Phys Chem A 106:3885

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Kang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2827 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, Y., Zhu, M. et al. A density functional theory exploration on the Zn catalyst for acetylene hydration. J Mol Model 26, 105 (2020). https://doi.org/10.1007/s00894-020-04354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04354-z

Keywords

Navigation