Skip to main content
Log in

Evolution of diffusion and structure of six n-alkanes in carbon dioxide at infinite dilution over wide temperature and pressure ranges: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Over wide temperature and pressure ranges, the molecular dynamics simulation is performed to study the mass transfer of six n-alkanes from n-C5H12 to n-C10H22 in CO2 at infinite dilution by calculating the diffusion coefficients, which have not yet been measured by experiment. Meanwhile, the structural properties of these systems are explored. It is found that under different temperature and pressure conditions, the variation trends of the radial distribution functions of n-alkanes are quite different, while the variation trends of the average coordination number of n-alkanes can be divided into three types. The radius of gyration and the solvent accessible surface area are both affected by temperature and carbon chain length, but their variation trends are different, and it could explain the abnormal variation trends of the radial distribution functions and the average coordination number.

Over wide temperature and pressure ranges, the variation trends of the average coordination number of n-alkanes can be divided into three types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zarabadi AS, Pawliszyn J (2015) Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection. Anal Chem 87(4):2100–2106

    CAS  PubMed  Google Scholar 

  2. Zheng S, Li HA, Sun H, Yang D (2016) Determination of diffusion coefficient for alkane solvent–CO2 mixtures in heavy oil with consideration of swelling effect. Ind Eng Chem Res 55(6):1533–1549

    CAS  Google Scholar 

  3. Ehrl A, Landesfeind J, Wall WA, Gasteiger HA (2017) Determination of transport parameters in liquid binary lithium ion battery electrolytes: I. Diffusion coefficient. J Electrochem Soc 164(4):A826–A836

    CAS  Google Scholar 

  4. Chen LP, Gross T, Lüdemann HD (1999) The density dependence of self-diffusion in some simple amines. Phys Chem Chem Phys 1(15):3503–3508

    CAS  Google Scholar 

  5. Chen LP, Groß T, Krienke H, Lüdemann HD (2001) T, p-Dependence of the self-diffusion and spin lattice relaxation in fluid hydrogen and deuterium. Phys Chem Chem Phys 3(11):2025–2030

    CAS  Google Scholar 

  6. Groß T, Chen L, Buchhauser J, Lüdemann H-D (2001) T,p-Dependence of intradiffusion in binary fluid mixtures with ammonia as one component. Phys Chem Chem Phys 3(17):3701–3706

    Google Scholar 

  7. Feng H, Liu X, Gao W, Chen X, Wang J, Chen L, Lüdemann H-D (2010) Evolution of self-diffusion and local structure in some amines over a wide temperature range at high pressures: a molecular dynamics simulation study. Phys Chem Chem Phys 12(45):15007–15017

    CAS  PubMed  Google Scholar 

  8. Gao W, Feng H, Xuan X, Chen L (2012) A theoretical study of N–H · π H-bond interaction of pyrrole: from clusters to the liquid. Mol Phys 110(18):2151–2161

    CAS  Google Scholar 

  9. Feng H, Gao W, Nie J, Wang J, Chen X, Chen L, Liu X, Lüdemann H-D, Sun Z (2013) MD simulation of self-diffusion and structure in some n-alkanes over a wide temperature range at high pressures. J Mol Model 19(1):73–82

    CAS  PubMed  Google Scholar 

  10. Feng H, Gao W, Sun Z, Chen L, Lüdemann H-D, Lei B, Li G (2014) The self-diffusion and hydrogen bond interaction in neat liquid alkanols: a molecular dynamic simulation study. Mol Simulat 40(13):1074–1084

    CAS  Google Scholar 

  11. Zhong H, Lai S, Wang J, Qiu W, Lüdemann H-D, Chen L (2015) Molecular dynamics simulation of transport and structural properties of CO2 using different molecular models. J Chem Eng Data 60(8):2188–2196

    CAS  Google Scholar 

  12. Chockalingam R, Natarajan U (2015) Dynamics of conformations, hydrogen bonds and translational diffusion of poly(methacrylic acid) in aqueous solution and the concentration transition in MD simulations. Mol Phys 113(21):3370–3382

    CAS  Google Scholar 

  13. Che X, Zhang J, Zhu Y, Yang L, Quan H, Gao YQ (2016) Structural flexibility and conformation features of cyclic dinucleotides in aqueous solutions. J Phys Chem B 120(10):2670–2680

    CAS  PubMed  Google Scholar 

  14. Wang J, Zhong H, Liang C, Chen X, Chen L (2016) Molecular dynamics simulation of diffusion and structure of n-alkane/n-alkanol mixtures at infinite dilution. J Mol Liq 223:489–496

    CAS  Google Scholar 

  15. Garcia MT, Kaczerewska O, Ribosa I, Brycki B, Materna P, Drgas M (2017) Hydrophilicity and flexibility of the spacer as critical parameters on the aggregation behavior of long alkyl chain cationic gemini surfactants in aqueous solution. J Mol Liq 230:453–460

    CAS  Google Scholar 

  16. Roszak K, Katrusiak A, Dega-Szafran Z, Komasa A, Kowalczyk I, Szafran M (2017) Conformational flexibility and pseudosymmetric aggregation in a betainium salt hydrate. Struct Chem 28(3):859–865

    CAS  Google Scholar 

  17. Guruge I, Taherzadeh G, Zhan J, Zhou Y, Yang Y (2018) B-factor profile prediction for RNA flexibility using support vector machines. J Comput Chem 39(8):407–411

    CAS  PubMed  Google Scholar 

  18. Bennett TD, Cheetham AK, Fuchs AH, Coudert F-X (2016) Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat Chem 9(1):11–16

    PubMed  Google Scholar 

  19. Liu Y, Lin D, Yuen PY, Liu K, Xie J, Dauskardt RH, Cui Y (2017) An artificial solid electrolyte interphase with high li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29(10):1605531

    Google Scholar 

  20. Che X, Du X-X, Cai X, Zhang J, Xie WJ, Long Z, Ye Z-Y, Zhang H, Yang L, Su X-D, Gao YQ (2017) Single mutations reshape the structural correlation network of the DMXAA–Human STING complex. J Phys Chem B 121(9):2073–2082

    CAS  PubMed  Google Scholar 

  21. Eckert CA (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318

    CAS  Google Scholar 

  22. Johnston KP, Shah PS (2004) Making nanoscale materials with supercritical fluids. Science 303(5657):482–483

    CAS  PubMed  Google Scholar 

  23. Moisan S, Martinez V, Weisbecker P, Cansell F, Mecking S, Aymonier C (2007) General approach for the synthesis of organic−inorganic hybrid nanoparticles mediated by supercritical CO2. J Am Chem Soc 129(34):10602–10606

    CAS  PubMed  Google Scholar 

  24. Sui R, Charpentier P (2012) Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem Rev 112(6):3057–3082

    CAS  PubMed  Google Scholar 

  25. Rahmawati A, Pang D, Ju Y-H, Soetaredjo FE, Ki OL, Ismadji S (2015) Supercritical CO2 extraction of phytochemical compounds from Mimosa pudica Linn. Chem Eng Commun 202(8):1011–1017

    CAS  Google Scholar 

  26. Iwai Y, Higashi H, Uchida H, Arai Y (1997) Molecular dynamics simulation of diffusion coefficients of naphthalene and 2-naphthol in supercritical carbon dioxide. Fluid Phase Equilibr 127(1–2):251–261

    CAS  Google Scholar 

  27. Higashi H, Iwai Y, Uchida H, Arai Y (1998) Diffusion coefficients of aromatic compounds in supercritical carbon dioxide using molecular dynamics simulation. J Supercrit Fluid 13(1–3):93–97

    CAS  Google Scholar 

  28. Higashi H, Iwai Y, Arai Y (2000) Calculation of self-diffusion and tracer diffusion coefficients near the critical point of carbon dioxide using molecular dynamics simulation. Ind Eng Chem Res 39(12):4567–4570

    CAS  Google Scholar 

  29. Skarmoutsos I, Samios J (2006) Local intermolecular structure and dynamics in binary supercritical solutions. A molecular dynamics simulation study of methane in carbon dioxide. J Mol Liq 125(2–3):181–186

    CAS  Google Scholar 

  30. Zabala D, Nieto-Draghi C, de Hemptinne JC, López de Ramos AL (2008) Diffusion coefficients in CO2/n-alkane binary liquid mixtures by molecular simulation. J Phys Chem B 112(51):16610–16618

    CAS  PubMed  Google Scholar 

  31. Vaz RV, Gomes JRB, Silva CM (2016) Molecular dynamics simulation of diffusion coefficients and structural properties of ketones in supercritical CO2 at infinite dilution. J Supercrit Fluids 107:630–638

    CAS  Google Scholar 

  32. Feng H, Gao W, Sun Z, Lei B, Li G, Chen L (2013) Molecular dynamics simulation of diffusion and structure of some n-alkanes in near critical and supercritical carbon dioxide at infinite dilution. J Phys Chem B 117(41):12525–12534

    CAS  PubMed  Google Scholar 

  33. Umezawa S, Nagashima A (1992) Measurement of the diffusion coefficients of acetone, benzene, and alkane in supercritical CO2 by the Taylor dispersion method. J Supercrit Fluids 5(4):242–250

    CAS  Google Scholar 

  34. Wang J, Zhong H, Feng H, Qiu W, Chen L (2014) Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution. J Chem Phys 140(10):429–435

    Google Scholar 

  35. Feng H, Gao W, Su L, Sun Z, Chen L (2017) MD simulation study of the diffusion and local structure of n-alkanes in liquid and supercritical methanol at infinite dilution. J Mol Model 23(6):195

    PubMed  Google Scholar 

  36. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    CAS  PubMed  Google Scholar 

  37. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106(22):6638–6646

    CAS  Google Scholar 

  38. Harris JG, Yung KH (1995) Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem 99(31):12021–12024

    CAS  Google Scholar 

  39. Nieto-Draghi C, de Bruin T, Pérez-Pellitero J, Avalos JB, Mackie AD (2007) Thermodynamic and transport properties of carbon dioxide from molecular simulation. J Chem Phys 126(6):064509

    PubMed  Google Scholar 

  40. Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14(2):148–158

    Google Scholar 

  41. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

    PubMed  Google Scholar 

  42. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    CAS  Google Scholar 

  43. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    CAS  Google Scholar 

  44. Lemmon EW, McLinden MO, Friend DG (2009) Thermophysical properties of fluid systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov/chemistry/fluid/.

  45. Bondi A (1964) van der Waals Volumes and Radii. J Phys Chem 68(3):441–451

    CAS  Google Scholar 

  46. Badenhoop JK, Weinhold F (1997) Natural steric analysis: Ab initio van der Waals radii of atoms and ions. J Chem Phys 107(14):5422–5432

    CAS  Google Scholar 

  47. Gross T, Buchhauser J, Lüdemann HD (1998) Self-diffusion in fluid carbon dioxide at high pressures. J Chem Phys 109(11):4518–4522

    CAS  Google Scholar 

Download references

Funding

This work was supported by Hainan Provincial Science and Technology Project (No. ZDYF2019160), the Program of Hainan Association for Science and Technology Plans to Youth R & D Innovation (No. HAST201621), the Natural Science Foundation of Hainan Province (No. 20162027), the Natural Science Foundation of Guangdong Province (No. 2015A030310176), and the Medical Science Research Foundation of Guangdong Province (No. A2015607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuping Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Gao, W., Su, L. et al. Evolution of diffusion and structure of six n-alkanes in carbon dioxide at infinite dilution over wide temperature and pressure ranges: a molecular dynamics study. J Mol Model 25, 370 (2019). https://doi.org/10.1007/s00894-019-4229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4229-7

Keywords

Navigation