Skip to main content
Log in

Target prediction and antioxidant analysis on isoflavones of demethyltexasin: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Glycosylated flavonoids are often found in supplementary food sources and are structurally more active than aglycones, as the glycosyl unit offers better solubility, stability, and functionality. The most common glycosyl units present in most secondary metabolites are glucoside and rhamnoside attached to flavonoid moiety. In the present work, 4’-O–glycosylated (4’-O-glucoside and 4’-O-rhamnoside) demethyltexasin, a soy isoflavone bearing a chromen nucleus, is investigated through a green route aided by density functional theory. Antioxidant activity is computed via three different antioxidant mechanisms, in which hydrogen atom abstraction is facilitated effectively in both gas and solvent phases. The 6–OH site (A-ring) in both isoflavone demethyltexasin glucoside (DMTG) and isoflavone demethyltexasin rhamnoside (DMTR) acted as better radical scavenging sites. Charge localization in B-ring is well altered by the glycosyl and rhamnosyl groups attached. Target prediction analysis supports DMTG with good binding ability with the selected homosapien class targets. The results depict that even though the flavonoid possessing rhamnosyl unit induces charge delocalization at the 4’-O position, it offers resistance toward antioxidant activity when compared to glycosyl moeity.

The contour representation of antioxidants demethyltexasin 4’-O- glucoside (DMTG) and demethyltexasin 4’-O- rhamnoside (DMTR) against reactive oxygen species(ROS)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakamura Y, Tsuji S, Tonogai Y (2000) Determination of the levels of isoflavonoids in soybeans and soy–derived foods and estimation of isoflavonoids in the Japanese daily diet. J AOAC Int 83:635–650

    CAS  PubMed  Google Scholar 

  2. Klejdus B, Vitamvasova–Sterbova D, Kuban V (2001) Identification of isoflavone conjugates in red clover (Trifolium pratense) by liquid chromatography–mass spectrometry after two–dimensional solid–phase extraction. Anal Chim Acta 450:81–97

    Article  CAS  Google Scholar 

  3. Chang YC, Nair MG (1995) Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod 58:1892–1896

    Article  CAS  Google Scholar 

  4. Chung HL, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen ZY (2005) Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem 90:735–741

    Article  Google Scholar 

  5. Meghwal M, Sahu CK (2015) Soy isoflavonoids as nutraceutical for human health: an update. J Cell Sci Ther 6:194. https://doi.org/10.4172/2157-7013.1000194

    Article  CAS  Google Scholar 

  6. Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N (2016) Food antioxidants: chemical insights at the molecular level. Annu Rev Food Sci Technol 7:15.1–15.18

    Article  Google Scholar 

  7. Lilienfeld V, Anatole O, Tavernelli I, Rothlisberger U, Sebastiani D (2004) Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys Rev Lett 93(15):153004

    Article  Google Scholar 

  8. Hummelova J, Rondevaldova J, Balastikova A, Lapcikand O, Kokoska L (2014) The relationship between structure and in vitro antibacterial activity of selected isoflavones and their metabolites with special focus on anti-staphylococcal effect of demethyltexasin. Lett Appl Microbiol 60:242–247

    Article  Google Scholar 

  9. Harborne (1999) Isoflavonoids and neoflavonoids. The handbook of natural flavonoids, vol 2. Wiley, New York, p 517

  10. Friedlander A, Sklarz B (1971) Structural elucidation of isoflavones from Glycine max, Experientia 27:762

    Article  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

  12. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  Google Scholar 

  13. Deepha V, Praveena R, Sadasivam K (2015). J Mol Struct 1082:131e142

    Article  Google Scholar 

  14. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H–atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

    Article  CAS  Google Scholar 

  15. Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem B 108:92–94

    Article  CAS  Google Scholar 

  16. Rüfer CE, Kulling SE (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem 54:2926–2931

    Article  Google Scholar 

  17. Jovanovic SV, Hara Y, Steenken S, Simic MG (1995) Antioxidant potential of gallocatechins. A pulse radiolysis and laser photolysis study. J Am Chem Soc 117:9881–9888

    Article  CAS  Google Scholar 

  18. Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547

    Article  CAS  Google Scholar 

  19. Han R–M, Tian Y–X, Becker EM, Andersen ML, Zhang J–P, Skibsted LH (2007) Puerarin and conjugate bases as radical scavengers and antioxidants: molecular mechanism and synergism with β–carotene. J Agric Food Chem 55:2384–2391

    Article  CAS  Google Scholar 

  20. Mendoza–Wilson AM, Lardizabal–Gutierrez D, Torres–Moye E, Fuentes–Cobas L, Balandran–Quintana RR, Camacho–Davila A, Quintero–Ramos A, Glossman–Mitnik D (2007) Optimized structure and thermochemical properties of flavonoids determined by the CHIH(medium)–DFT model chemistry versus experimental techniques. J Mol Struct 871:114–130

    Article  Google Scholar 

  21. Zheng YZ, Deng G, Liang Q, Chen DF, Guo R, Lai RC (2017) Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep 7(1):7543. https://doi.org/10.1038/s41598-017-08024-8.

  22. Estevez L, Otero N, Mosquera RA (2010) A computational study on the acidity dependence of radical–scavenging mechanisms of anthocyanidins. J Phys Chem B 114:9706–9712

    Article  CAS  Google Scholar 

  23. JR L–C, JR A–I, Galano A (2012) On the peroxyl scavenging activity of hydroxycinnamic acid derivatives: mechanisms, kinetics, and importance of the acid–base equilibrium. Phys Chem Chem Phys 14:12534–12543 32

    Article  Google Scholar 

  24. Trouilla P, Marsal P, Siri D, Lazzaroni R, Duroux J-L (2006) A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site. Food Chem 97(4):679–688 ISSN: 0308-8146

    Article  Google Scholar 

  25. Rong Y, Wang Z, Wu J, Zhao B (2012) A theoretical study on cellular antioxidant activity of selected flavonoids. Spectrochim Acta A 93:235–239

    Article  CAS  Google Scholar 

  26. Manz TA, Gabaldon–Limas N (2016) Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology. RSC Adv 6:47771–47801. https://doi.org/10.1039/c6ra04656h

    Article  CAS  Google Scholar 

  27. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  CAS  Google Scholar 

  28. Lu T, Chen F (2011) Calculation of molecular orbital composition. Acta Chim Sin 69:2393–2406

    CAS  Google Scholar 

  29. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comp Chem 33:580–592

    Article  Google Scholar 

  30. Bader RFW, Johnson S, Tang TH, Popelier PLA (1996). J Phys Chem 100:15398

    Article  CAS  Google Scholar 

  31. Frasca M (1998) Duality in perturbation theory and the quantum adiabatic approximation. Phys Rev A 58(5):3439

    Article  CAS  Google Scholar 

  32. Sadlej-Sosnowska N (2001) Application of natural bond orbital analysis to delocalization and aromaticity in C-substituted tetrazoles. J Org Chem 66:8737–8743

    Article  CAS  Google Scholar 

  33. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(Web Server issue):W32–W38

    Article  CAS  Google Scholar 

  34. Perez–Miller SJ, Hurley TD (2003) Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Biochemistry 42(23):7100–7109

    Article  Google Scholar 

  35. Krupenko NI, Dubard ME, Strickland KC, Moxley KM, Oleinik NV, Krupenko SA (2010) ALDH1L2 is the mitochondrial homolog of 10–formyltetrahydrofolate dehydrogenase. J Biol Chem 285(30):23056–23063

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the Science and Engineering Research Board, Department of Science and Technology (DST–SERB), and Government of India for funding the research. Grant Id. (EMR/2016/002892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Praveena.

Ethics declarations

Conflict of interest

The authors state that there is not any potential conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbazhakan, K., Sadasivam, K., Praveena, R. et al. Target prediction and antioxidant analysis on isoflavones of demethyltexasin: a DFT study. J Mol Model 25, 169 (2019). https://doi.org/10.1007/s00894-019-4045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4045-0

Keywords

Navigation