Skip to main content
Log in

Quantum-mechanical investigation of tetrel bond characteristics based on the point-of-charge (PoC) approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The point-of-charge (PoC) approach was employed to investigate the characteristics of the tetrel bond from an electrostatic perspective. W–T–XYZ···B nomenclature was suggested where T is a tetrel atom, W is the atom along the σ-hole extension, B is a Lewis base, and X, Y, and Z are three atoms on the same side of the σ-hole. Quantum-mechanical calculations were carried out on F–T–F3 systems (where T = C, Si, Ge, or Sn) at the MP2/aug-cc-pVTZ level of theory, with PP functions for Ge and Sn atoms. The tetrel bond strength was estimated via the molecular stabilization energy. Tetrel bond strength was found to increase with increasing PoC negativity (i.e., Lewis basicity) and the electronegativity of the W atom. Moreover, the effects of the T···PoC distance, the W–T···PoC angle, and the aqueous medium on the tetrel bond strength were also investigated. Correlations between tetrel bond strength and several atomic and molecular descriptors such as the natural charge on the tetrel atom, EHOMO, and the p-orbital contribution to W–T bond hybridization were observed. Contrary to expectations, the tetrel bond strength in F–C–X3 increased as the electronegativity of X decreased. The σ-node criteria for the studied molecules were also introduced and discussed. The ability of these molecules to simultaneously form more than one tetrel bond was examined via the σn-hole test. In conclusion, the tetrel bond strength was found to be governed by the strengths of (i) the attractive electrostatic interaction of the Lewis base with the σ-hole, (ii) the attractive/repulsive interaction between the Lewis base and the X, Y, and Z atoms, and (iii) the van der Waals interaction between the Lewis base and the X, Y, and Z atoms.

Characterization of tetrel bond using the Point-of-Charge (PoC) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13(2):291–296

    Article  CAS  PubMed  Google Scholar 

  2. Brammer L (2004) Developments in inorganic crystal engineering. Chem Soc Rev 33(8):476–489

    Article  CAS  PubMed  Google Scholar 

  3. Politzer P, Murray JS, Concha MC (2007) Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors. J Mol Model 13(6):643–650

    Article  CAS  PubMed  Google Scholar 

  4. Hernandes MZ, Cavalcanti SMT, Moreira DRM, de Azevedo Junior WF, Leite ACL (2010) Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr Drug Targets 11(3):303–314

    Article  CAS  PubMed  Google Scholar 

  5. Wilcken R, Zimmermann MO, Lange A, Zahn S, Boeckler FM (2012) Using halogen bonds to address the protein backbone: a systematic evaluation. J Comput Aided Mol Des 26(8):935–945

    Article  CAS  PubMed  Google Scholar 

  6. Ibrahim MAA (2011) Molecular mechanical study of halogen bonding in drug discovery. J Comput Chem 32(12):2564–2574

    Article  CAS  PubMed  Google Scholar 

  7. Murray J, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15(6):723–729

    Article  CAS  PubMed  Google Scholar 

  8. Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chem Int Ed 52(47):12317–12321

    Article  CAS  Google Scholar 

  9. Grabowski SJ (2014) Tetrel bond–σ-hole bond as a preliminary stage of the SN2 reaction. PCCP 16(5):1824–1834

  10. Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113(11):1609–1620

    Article  CAS  Google Scholar 

  11. Li Q-Z, Li R, Liu X-F, Li W-Z, Cheng J-B (2012) Concerted interaction between pnicogen and halogen bonds in XCl–FH2P–NH3 (X = F, OH, CN, NC, and FCC). ChemPhysChem 13(5):1205–1212

  12. Gleiter R, Werz DB, Rausch BJ (2003) A world beyond hydrogen bonds? Chalcogen–chalcogen interactions yielding tubular structures. Chem Eur J 9(12):2676–2683

  13. Esrafili MD, Mohammadian-Sabet F (2015) Does single-electron chalcogen bond exist? Some theoretical insights. J Mol Model 21(3):65–73

    Article  CAS  PubMed  Google Scholar 

  14. Legon AC (2010) The halogen bond: an interim perspective. PCCP 12(28):7736–7747

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y-H, Zou J-W, Lu Y-X, Yu Q-S, Xu H-Y (2007) Single-electron halogen bond: ab initio study. Int J Quantum Chem 107(2):501–506

    Article  CAS  Google Scholar 

  16. Quinonero D (2017) Sigma-hole carbon-bonding interactions in carbon–carbon double bonds: an unnoticed contact. PCCP 19(23):15530–15540

  17. Politzer P, Murray JS, Lane P, Concha MC (2009) Electrostatically driven complexes of SiF4 with amines. Int J Quantum Chem 109(15):3773–3780

  18. Davis MF, Levason W, Reid G, Webster M, Zhang W (2008) The first examples of germanium tetrafluoride and tin tetrafluoride complexes with soft thioether coordination—synthesis, properties and crystal structures. Dalton Trans 4:533–538

  19. Li Q, Guo X, Yang X, Li W, Cheng J, Li H-B (2014) A σ-hole interaction with radical species as electron donors: does single-electron tetrel bonding exist? PCCP 16(23):11617–11625

    Article  CAS  PubMed  Google Scholar 

  20. Laconsay CJ, Galbraith JM (2017) A valence bond theory treatment of tetrel bonding interactions. Comput Theor Chem 1116:202–206

    Article  CAS  Google Scholar 

  21. Liu M, Li Q, Li W, Cheng J, McDowell SAC (2016) Comparison of hydrogen, halogen, and tetrel bonds in the complexes of HArF with YH3X (X = halogen, Y = C and Si). RSC Adv 6(23):19136–19143

  22. Murray JS, Concha MC, Politzer P (2011) Molecular surface electrostatic potentials as guides to Si–O–N angle contraction: tunable σ-holes. J Mol Model 17(9):2151–2157

  23. Grabowski SJ (2017) Lewis acid properties of tetrel tetrafluorides—the coincidence of the σ-hole concept with the QTAIM approach. Crystals 7(2):43–56

    Article  CAS  Google Scholar 

  24. Scheiner S (2017) Systematic elucidation of factors that influence the strength of tetrel bonds. J Phys Chem A 121(29):5561–5568

    Article  CAS  PubMed  Google Scholar 

  25. Ibrahim MAA, Hasb AAM, Mekhemer GAH (2018) Role and nature of halogen bonding in inhibitor···receptor complexes for drug discovery: casein kinase-2 (CK2) inhibition as a case study. Theor Chem Accounts 137(3):38–47

  26. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):618–622

    Article  Google Scholar 

  27. Woon DE, Dunning TH (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100(4):2975–2988

    Article  CAS  Google Scholar 

  28. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371

    Article  CAS  Google Scholar 

  29. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17(13):1571–1586

    Article  CAS  Google Scholar 

  30. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  CAS  PubMed  Google Scholar 

  31. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34(16):1429–1437

    Article  CAS  PubMed  Google Scholar 

  32. Reed AEL, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

  33. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven TJA, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision E01. Gaussian, Inc., Wallingford

  35. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19(7):2739–2746

Download references

Acknowledgements

This work was supported by the Science and Technology Development Fund, STDF, Egypt, under grant no. 5480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. A. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.A.A., Moussa, N.A.M. & Safy, M.E.A. Quantum-mechanical investigation of tetrel bond characteristics based on the point-of-charge (PoC) approach. J Mol Model 24, 219 (2018). https://doi.org/10.1007/s00894-018-3752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3752-2

Keywords

Navigation