Skip to main content
Log in

Quantum-chemical simulations of the hydration of Pb(II) ion: structure, hydration energies, and pKa1 value

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Thermodynamic and structural aspects of the hydration of Pb(II) ions were explored based on DFT calculations combined with the supermolecular/continuum solvent model. Hydration of Pb(II) was considered as the formation of Pb(H2O)n2+ aqua complexes (n=6−9) from the gas phase Pb(II) ion. Hexa- and hepta-aqua Pb(II) complexes were shown to exhibit the hemidirected symmetry, while those containing eight and nine water molecules are characterized by the holodirected symmetry. The calculations showed that because Pb(H2O)n2+ complexes with six to nine water molecules have comparable thermodynamic stabilities, such complexes are likely to coexist in aqueous solutions. The deprotonation of Pb(H2O)n2+ complexes was shown to result in the formation of the mono-hydroxo complex [Pb(H2O)4OH]+. The pKa1 value determined for this reaction (7.58 for Pb(H2O)62+) was close to the experimental value of 7.61 used in recent models of aquatic equilibria. The density functional method ω-B97X(PCM-UAO) in combination with the atomic basis set 6-311++G(d,p) for O and H and the small-core electron effective pseudopotential (ECP) with the aug-cc-pvdz-PP basis set for Pb can be recommended for such calculations.

Structures of Pb(II) ions with varying numbers of water molecules in the inner hydration shell

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marcus Y (1985) Ion solvation. Wiley, Chichester

  2. Ben-Naim A (1987) Solvation thermodynamics. Plenum, New York

    Book  Google Scholar 

  3. Bryantsev VS, Diallo MS, Godard III WA (2008) Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B 112:9709–9719. https://doi.org/10.1021/jp802665d

    Article  CAS  PubMed  Google Scholar 

  4. Brown MJ, Raymond J, Homa D, Kennedy C, Sinks T (2011) Association between children’s blood lead levels, lead service lines, and water disinfection, Washington, DC, 1998−2006. Environ Res 111:67–74. https://doi.org/10.1016/j.amjmed.2016.05.042

    Article  CAS  PubMed  Google Scholar 

  5. Triantafyllidou S, Edwards M (2012) Lead (Pb) in tap water and in blood: implications for lead exposure in the United States. Rev Environ Sci Technol 42:1297–1352. https://doi.org/10.1080/10643389.2011.556556

    Article  CAS  Google Scholar 

  6. Liu H, Kuznetsov AM, Masliy AN, Ferguson JF, Korshin GV (2012) Formation of Pb(III) intermediates in the electrochemically controlled Pb(II)/PbO2 system. Environ Sci Technol 46:1430–1438. https://doi.org/10.1021/es203084n

    Article  CAS  PubMed  Google Scholar 

  7. Lytle DA, Schock MR (2005) Formation of Pb(IV) oxides in chlorinated water. J Am Water Works Assoc 97:102–114. https://doi.org/10.1021/es102318z

    Article  CAS  Google Scholar 

  8. Noel JD, Wang Y, Giammar DE (2014) Effect of water chemistry on the dissolution rate of the lead corrosion product hydrocerussite. Water Res 54:237–246. https://doi.org/10.1016/j.watres.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Edwards M, Triantafyllidou S (2007) Chloride-to-sulfate mass ratio and lead leaching to water. J Am Water Works Assoc 99:96–109

    Article  CAS  Google Scholar 

  10. Xie Y, Giammar DE (2011) Effects of flow and water chemistry on lead release rates from pipe scales. Water Res 45:6525–6534. https://doi.org/10.1016/j.watres.2011.09.050

    Article  CAS  PubMed  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  12. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  14. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  15. Chai J-D, Head-Gordon M (2008a) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106–084115. https://doi.org/10.1063/1.2834918

    Article  CAS  PubMed  Google Scholar 

  16. Chai J-D, Head-Gordon M (2008b) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 44:6615–6620. https://doi.org/10.1039/B810189B

    Article  Google Scholar 

  17. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101: 1–18. https://doi.org/10.1063/1.2370993

    Article  CAS  PubMed  Google Scholar 

  18. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  PubMed  Google Scholar 

  19. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129. https://doi.org/10.1063/1.1626543. [Erratum] 121 (2004) 11507(E). doi:10.1063/1.1795692

  20. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–−1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  21. Peterson KA (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. Chem Phys 119:11099–11112. https://doi.org/10.1063/1.1622923

    Article  CAS  Google Scholar 

  22. Metz B, Stoll H, Dolg M (2000) Small-core multiconfiguration Dirac-Hartree-Fock-adjusted pseudopotentials for post-d main group elements: application to PbH and PbO. J Chem Phys 113:2563–2569. https://doi.org/10.1063/1.1305880

    Article  CAS  Google Scholar 

  23. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  24. Persson I (2010) Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl Chem 82:1901–1917. https://doi.org/10.1351/PAC-CON-09-10-22

    Article  CAS  Google Scholar 

  25. Wander MCF, Clark AE (2008) Hydration properties of aqueous Pb(II) ion. Inorg Chem 46:8233–8241. https://doi.org/10.1021/ic800750g

    Article  CAS  Google Scholar 

  26. Kelly CP, Cramer CJ, Truhlar DG (2005) SM6: a density functional theory continuum solvation model for calculating aqueous solvation free energies of neutrals, ions, and solute-water clusters. J Chem Theory Comput 1:1133–1152. https://doi.org/10.1021/ct050164b

    Article  CAS  PubMed  Google Scholar 

  27. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081. https://doi.org/10.1021/jp063552y

    Article  CAS  PubMed  Google Scholar 

  28. Eisenberg D, Kauzmann W (1969) The structure and properties of water. Oxford University Press, London

    Google Scholar 

  29. Shimoni-Livny L, Glusker JP, Bock CW (1998) Lone pair functionality in divalent lead compounds. Inorg Chem 37:1853–1867. https://doi.org/10.1021/ic970909r

    Article  CAS  Google Scholar 

  30. Swift TJ, Sayre WG (1966) Determination of hydration numbers of cations in aqueous solution by means of proton NMR. J Chem Phys 44:3567–3574. https://doi.org/10.1063/1.1727266

    Article  CAS  Google Scholar 

  31. Bargar JR, Brown GEJ, Parks GA (1997) Surface complexation of Pb(II) at oxide-water interfaces: I. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides. Geochim Cosmochim Acta 61:2617–2637. https://doi.org/10.1016/S0016-7037(97)00124-5

    Article  CAS  Google Scholar 

  32. Persson I, Lyczko K, Lundberg D, Eriksson L, Płaczek A (2011) Coordination chemistry study of hydrated and solvated lead(II) ions in solution and solid state. Inorg Chem 50:1058–1072. https://doi.org/10.1021/ic1017714

    Article  CAS  PubMed  Google Scholar 

  33. Gourlaonen C, Gerard H, Parisel O (2006) Exploring the hydration of Pb2+: Ab initio studies and first principles molecular dynamics. Chem Eur J 12:5024–5032. https://doi.org/10.1002/chem.200600045

    Article  CAS  Google Scholar 

  34. Bhattcharjee A, Hofer TS, Pribil AB, Randolf BR, Lim LHV, Lichtenberger AF, Rode BM (2009) Revisiting the hydration of Pb(II): a QMCF MD approach. J Phys Chem B 113:13007–13013. https://doi.org/10.1021/jp905848x

    Article  CAS  Google Scholar 

  35. Marcus Y (1987) The thermodynamics of solvation of ions. Part 2. The enthalpy of hydration at 298.15 K. J Chem Soc Faraday Trans 83:339–349. https://doi.org/10.1039/F19878300339

    Article  CAS  Google Scholar 

  36. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999. https://doi.org/10.1039/FT9918702995

    Article  CAS  Google Scholar 

  37. Canal Neto A, Jorge FE (2013) All-electron double zeta basis sets for the most fifth-row atoms: application in DFT spectroscopic constant calculations. Chem Phys Lett 582:158–162

    Article  CAS  Google Scholar 

  38. Liptak MD, Shields GC (2001a) Experimentation with different thermodynamic cycles used for pK a calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Int J Quantum Chem 85:727–741. https://doi.org/10.1002/qua.1703

    Article  CAS  Google Scholar 

  39. Tawa GJ, Topol IA, Burt SK, Caldwell RA, Rashin AA (1998) Calculation of the aqueous solvation free energy of the proton. J Chem Phys 109:4852–4863. https://doi.org/10.1063/1.477096

    Article  CAS  Google Scholar 

  40. Liptak MD, Shields GC (2001b) Accurate pK a calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J Amer Chem Soc 123:7314–7319. https://doi.org/10.1021/ja010534f

    Article  CAS  Google Scholar 

  41. Liptak MD, Gross KC, Saybold PG, Feldgus S, Shields GC (2002) Absolute pK a determinations for substituted phenols. J Amer Chem Soc 124:6421–6427. https://doi.org/10.1021/ja012474j

    Article  CAS  Google Scholar 

  42. Benjamin MM (2015) Water chemistry, 2nd edn, Chap. 10. Waveland, Long Grove, pp 561–566

  43. Pankow JF (1991) Aquatic chemistry concepts, Chap. 11. Lewis, Chelsea, pp 217–242

  44. Weng CH (2004) Modeling Pb(II) adsorption onto sandy loam soil. J Colloid Interface Sci 272:262–270. https://doi.org/10.1016/j.jcis.2003.11.051

    Article  CAS  PubMed  Google Scholar 

  45. Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations, Chap. 15. Wiley, New York, pp 358–365 (and references therein)

  46. Cruywagen JJ, van de Water RF (1993) The hydrolysis of lead(II). A potentiometric and enthalpimetric study. Talanta 40:1091–1095. https://doi.org/10.1016/0039-9140(93)80171-M

    Article  CAS  PubMed  Google Scholar 

  47. Seybold PG, Shields GC (2015) Computational estimation of pK a values. WIREs Comput Mol Sci 5:290–297. https://doi.org/10.1002/wcms.1218

    Article  CAS  Google Scholar 

  48. Li J, Fisher CL, Chen JL, Bashford D, Noodleman L (1996) Calculation of redox potentials and pK a values of hydrated transition metal cations by a combined density functional and continuum dielectric theory. Inorg Chem 35(16):694–4702. https://doi.org/10.1021/ic951428f

    Article  Google Scholar 

  49. De Abreu HA, Guimarães L, Duarte HA (2006) Density-functional theory study of iron(III) hydrolysis in aqueous solution. J Phys Chem A 110(24):7713–7718. https://doi.org/10.1021/jp060714h

    Article  CAS  PubMed  Google Scholar 

  50. Gilson R, Durrant MC (2009) Estimation of the pK a values of water ligands in transition metal complexes using density functional theory with polarized continuum model solvent corrections. Dalton Trans 46:10223–10230 https://doi.org/10.1039/C7DT04291D

    Article  CAS  Google Scholar 

  51. Yang W, Qian Z, Miao Q, Wang Y, Bi S (2009) Density functional theory study of the aluminium(III) hydrolysis in aqueous solution. Phys Chem Chem Phys 11:2396–2401. https://doi.org/10.1039/B819484J

    Article  CAS  PubMed  Google Scholar 

  52. Jackson VE, Felmy AR, Dixon DA (2015) Prediction of the pK a’s of aqueous metal ion +2 complexes. J Phys Chem A 119:2926–2939. https://doi.org/10.1021/jp5118272

    Article  CAS  PubMed  Google Scholar 

  53. Galstyan G, Knapp EW (2015) Computing pK a values of hexa-aqua transition metal complexes. J Comput Chem 36:69–78. https://doi.org/10.1002/jcc.23764

    Article  CAS  PubMed  Google Scholar 

  54. Yu D, Du R, Xiao J-C, Xu S, Rong C, Liu S (2018) Theoretical study of pK a values for trivalent rare-earth metal cations in aqueous solution. J Phys Chem A 122(2):700–707. https://doi.org/10.1021/acs.jpca.7b12074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Russian Federation (Project No.5382.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory V. Korshin.

Electronic supplementary material

ESM 1

Supplementary data associated with this article (four tables presenting Cartesian coordinates of Pb(II) complexes modeled in this study, hydration energies of Pb(II) ion and the averaged Pb-O distances in hexa-aqua complex calculated using the all-electron basis set for Pb, Gibbs free energy and pKa1 value for the hydrolysis of Pb(II) ion determined for different initial composition of the aqua complexes) can be found in the online version of this paper. (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.M., Masliy, A.N. & Korshin, G.V. Quantum-chemical simulations of the hydration of Pb(II) ion: structure, hydration energies, and pKa1 value. J Mol Model 24, 193 (2018). https://doi.org/10.1007/s00894-018-3726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3726-4

Keywords

Navigation