Skip to main content
Log in

Theoretical investigations on the structures and properties of CL-20/TNT cocrystal and its defective models by molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

“Perfect” and defective models of CL-20/TNT cocrystal explosive were established. Molecular dynamics methods were introduced to determine the structures and predict the comprehensive performances, including stabilities, sensitivity, energy density and mechanical properties, of the different models. The influences of crystal defects on the properties of these explosives were investigated and evaluated. The results show that, compared with the “perfect” model, the rigidity and toughness of defective models are decreased, while the ductility, tenacity and plastic properties are enhanced. The binding energies, interaction energy of the trigger bond, and the cohesive energy density of defective crystals declined, thus implying that stabilities are weakened, the explosive molecule is activated, trigger bond strength is diminished and safety is worsened. Detonation performance showed that, owing to the influence of crystal defects, the density is lessened, detonation pressure and detonation velocity are also declined, i.e., the power of defective explosive is decreased. In a word, the crystal defects may have a favorable effect on the mechanical properties, but have a disadvantageous influence on sensitivity, stability and energy density of CL-20/TNT cocrystal explosive. The results could provide theoretical guidance and practical instructions to estimate the properties of defective crystal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24:1–30

    Article  CAS  Google Scholar 

  2. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  PubMed  Google Scholar 

  3. Lara OF, Espinosa PG (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  CAS  Google Scholar 

  4. Shan N, Zaworotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discov Today 13:440–446

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Zhang G, Luan JY, Chen ZQ, Su PF, Shu YJ (2016) Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct 110:91–96

    Article  CAS  Google Scholar 

  6. Xu HF, Duan XH, Li HZ, Pei CH (2015) A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 5:95764–95770

    Article  CAS  Google Scholar 

  7. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  8. Wang YP, Yang ZW, Li HZ, Zhou XQ, Zhang Q, Wang JH, Liu YC (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39:590–596

    Article  CAS  Google Scholar 

  9. Yang ZW, Li HZ, Zhou XQ, Zhang CY, Huang H, Li JS, Nie FD (2012) Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    Article  CAS  Google Scholar 

  10. Guo CY, Zhang HB, Wang XC, Xu JJ, Liu Y, Liu XF, Huang H, Sun J (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    Article  CAS  Google Scholar 

  11. Chen PY, Zhang L, Zhu SG, Cheng GB (2015) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of CL-20/TEX cocrystal explosive. Can J Chem 93:632–638

    Article  CAS  Google Scholar 

  12. Yang ZW, Wang YP, Zhou JH, Li HZ, Huang H, Nie FD (2014) Preparation and performance of a BTF/DNB cocrystal explosive. Propellants Explos Pyrotech 39:9–13

    Article  CAS  Google Scholar 

  13. Zhang HB, Guo CY, Wang XC, Xu JJ, He X, Liu Y, Liu XF, Huang H, Sun J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13:679–687

    Article  CAS  Google Scholar 

  14. Ma Y, Hao SL, Li HZ, Liu YC, Yang ZW (2015) Preparation and performance of BTF-DNAN cocrystal explosive. Chin J Energ Mater 23:1228–1230

    Google Scholar 

  15. Wei CX, Huang H, Duan XH, Pei CH (2011) Structures and properties prediction of HMX/TATB co-crystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  16. Lin H, Zhu SG, Li HZ, Peng XH (2013) Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem 26:898–907

    Article  CAS  Google Scholar 

  17. Li HQ, An CW, Guo WJ, Geng XH, Wang JY, Xu WZ (2015) Preparation and performance of nano HMX/TNT cocrystals. Propellants Explos Pyrotech 40:652–658

    Article  CAS  Google Scholar 

  18. Shen JP, Duan XH, Luo QP, Zhou Y, Bao QL, Ma YJ, Pei CH (2011) Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des 11:1759–1765

    Article  CAS  Google Scholar 

  19. Lin H, Zhu SG, Zhang L, Peng XH, Li HZ (2013) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272

    Article  CAS  Google Scholar 

  20. Lin H, Chen JF, Zhu SG, Li HZ, Huang Y (2017) Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater 35:95–108

    Article  CAS  Google Scholar 

  21. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

    Article  CAS  Google Scholar 

  22. Landenberger KB, Bolton O, Matzger AJ (2015) Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 137:5074–5079

    Article  CAS  PubMed  Google Scholar 

  23. Lin H, Zhu SG, Zhang L, Peng XH, Chen PY, Li HZ (2013) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO cocrystal explosive. Int J Quantum Chem 113:1591–1599

    Article  CAS  Google Scholar 

  24. Wu JT, Zhang JG, Li T, Li ZM, Zhang TL (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359

    Article  CAS  Google Scholar 

  25. Guo CY, Zhang HB, Wang XC, Liu XF, Sun J (2013) Study on a novel energetic cocrystal of TNT/TNB. J Mater Sci 48:1351–1357

    Article  CAS  Google Scholar 

  26. Landenberger KB, Matzger AJ (2010) Cocrystal engineering of prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst Growth Des 10:5341–5347

    Article  CAS  Google Scholar 

  27. Ma Y, Huang Q, Li HZ, Tan BS, Liu YC, Yang ZW (2017) Preparation and characterization of TNT/TNCB cocrystal explosive. Chin J Energ Mater 25:86–88

    Google Scholar 

  28. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50:8960–8963

    Article  CAS  Google Scholar 

  29. Yang ZW, Li HZ, Huang H, Zhou XQ, Li JS, Nie FD (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos Pyrotech 38:495–501

    Article  CAS  Google Scholar 

  30. Xu XJ, Xiao JJ, Huang H, Li JS, Xiao HM (2010) Molecular dynamic simulations on the structures and properties of ε-CL-20(0 0 1)/F2314 PBX. J Hazard Mater 175:423–428

    Article  CAS  PubMed  Google Scholar 

  31. Xiao JJ, Li SY, Chen J, Ji GF, Zhu W, Zhao F, Wu Q, Xiao HM (2013) Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs. J Mol Model 19:803–809

    Article  CAS  PubMed  Google Scholar 

  32. Ma XF, Xiao JJ, Huang H, Li JS, Xiao HM (2008) A theoretical study on crystal defect of HMX and HMX/HTPB PBX. Acta Chim Sin 66:897–901

    CAS  Google Scholar 

  33. Sun H, Ren PJ, Fried R (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  34. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS forcefield. J Chem Chem B 104:2477–2489

    Article  CAS  Google Scholar 

  35. Michael JM, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  CAS  Google Scholar 

  36. Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  37. Pettifor DG (1992) Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol 8:345–349

    Article  CAS  Google Scholar 

  38. Wu JL (1993) Mechanics of elasticity. Tongji University Press, Shanghai

    Google Scholar 

  39. Weiner JH (1983) Statistical mechanics of elasticity. Wiley, New York

    Google Scholar 

  40. Lan Y, Zhai J, Li D, Yang R (2014) Multiscale simulation on the influence of dimethyl hydantoin on mechanical properties of GAP/RDX propellants. Propellants Explos Pyrotech 39:18–23

    Article  CAS  Google Scholar 

  41. Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite materials. Rev Geophys Space Phys 14:541–563

    Article  CAS  Google Scholar 

  42. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B 110:7203–7207

    Article  CAS  PubMed  Google Scholar 

  43. Zhu W, Xiao JJ, Zhu WH, Xiao HM (2009) Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J Hazard Mater 164:1082–1088

    Article  CAS  PubMed  Google Scholar 

  44. Qiu L, Xiao HM (2009) Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J Hazard Mater 164:329–336

    Article  CAS  PubMed  Google Scholar 

  45. Politzer P, Murray JS (1995) C-NO2 dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules. Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  46. Murray JS, Lane P, Politzer P (1995) Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  47. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C-NO2/N-NO2 bond dissociation energies. Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  48. Politzer P, Murray JS (2015) Impact sensitivity and maximum heat of detonation. J Mol Model 21:262

    Article  PubMed  Google Scholar 

  49. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  CAS  PubMed  Google Scholar 

  50. Zhu WH, Zhang XW, Xiao HM (2010) Theoretical studies of impact sensitivity of crystals-first principles band gap (ΔE g) criterion. Chin J Energ Mater 18:431–434

    Google Scholar 

  51. Zhu WH, Zhang XW, Wei T (2009) DFT studies of pressure effects on structural and vibrational properties of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. Theor Chem Accounts 124:179–186

    Article  CAS  Google Scholar 

  52. Zhu W, Wang XJ, Xiao JJ, Zhu WH, Sun H, Xiao HM (2009) Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater 167:810–816

    Article  CAS  PubMed  Google Scholar 

  53. Xiao JJ, Zhao L, Zhu W, Chen J, Ji GF, Zhao F, Wu Q, Xiao HM (2012) Molecular dynamics study on the relationships of modeling, structural and energy properties with sensitivity for RDX-based PBXs. Sci China Chem 55:2587–2594

    Article  Google Scholar 

  54. Sun T, Xiao JJ, Liu Q, Zhao F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A 2:13898–13904

    Article  CAS  Google Scholar 

  55. Zhu W, Liu DM, Xiao JJ, Zhao XB, Zheng J, Zhao F, Xiao HM (2014) Molecular dynamics study on sensitivity criterion, thermal expansion and mechanical properties of multi-component high energy systems. Chin J Energ Mater 22:582–587

    CAS  Google Scholar 

  56. Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H (2003) Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim 73:913–922

    Article  CAS  Google Scholar 

  57. Xu XJ, Xiao HM, Ju XH, Gong XD (2005) Theoretical study on pyrolysis mechanism for ε-hexanitrohexaazaisowurtzitane. Chin J Org Chem 25:536–539

    CAS  Google Scholar 

  58. Guo DZ, An Q, Goddard WA, Zybin SV, Huang FL (2014) Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. J Phys Chem C 118:30202–30208

    Article  CAS  Google Scholar 

  59. Guo DZ, An Q, Zybin SV, Goddard WA, Huang FL, Tang B (2015) The co-crystal of TNT/CL-20 leads to decreased sensitivity toward thermal decomposition from first principles based reactive molecular dynamics. J Mater Chem A 3:5409–5419

    Article  CAS  Google Scholar 

  60. Zhang JH, Shreeve JM (2016) Time for pairing: cocrystals as advanced energetic materials. CrystEngComm 18:6124–6133

    Article  CAS  Google Scholar 

  61. Guo YX, Zhang HS (1983) Nitrogen equivalent coefficient and revised nitrogen equivalent coefficient equations for calculating detonation properties of explosives: detonation velocity of explosives. Explos Shock Waves 3:57–65

    Google Scholar 

  62. Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation. J Mol Model 23:281

    Article  CAS  PubMed  Google Scholar 

  63. Wang YL, Yu WL (2011) Explosives, initiators and pyrotechnics. Northwestern Polytechnical University Press, Xi’an

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-yun Hang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, Gy., Yu, Wl., Wang, T. et al. Theoretical investigations on the structures and properties of CL-20/TNT cocrystal and its defective models by molecular dynamics simulation. J Mol Model 24, 158 (2018). https://doi.org/10.1007/s00894-018-3697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3697-5

Keywords

Navigation