Skip to main content
Log in

Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO2) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO2, while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O–H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials.

The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO2) has been investigated under the scheme of density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shiba K (2010) Exploitation of peptide motif sequences and their use in nanobiotechnology. Curr Opin Biotechnol 21:412–425

    Article  CAS  Google Scholar 

  2. Busseron E, Ruff Y, Moulin E, Giuseppone N (2013) Supramolecular self-assemblies as functional nanomaterials. Nano 5:7098–7140

    CAS  Google Scholar 

  3. Wahab HS (2012) Quantum chemical modeling study of adsorption of benzoic acid on anatase TiO2 nanoparticles. J Mol Model 18:2709–2716

    Article  CAS  Google Scholar 

  4. Zhao Y, Xiong T, Huang W (2010) Effect of heat treatment on bioactivity of anodic titania films. Appl Surf Sci 256:3073–3076

    Article  CAS  Google Scholar 

  5. Dimitrievska S, Whitfield J, Hacking SA, Bureau MN (2009) Novel carbon fiber composite for hip replacement with improved in vitro and in vivo osseointegration. J Biomed Mater Res Part A 91A:37–51

    Article  CAS  Google Scholar 

  6. Latour RA (2008) Molecular simulation of protein–surface interactions: benefits, problems, solutions, and future directions. Biointerphases 3:FC2–FC12

    Article  CAS  Google Scholar 

  7. Felice RD, Corni S (2011) Simulation of peptide–surface recognition. J Phys Chem Lett 2:1510–1519

    Article  Google Scholar 

  8. Ercan B, Kummer KM, Tarquinio KM, Webster TJ (2011) Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomater 7:3003–3012

    Article  CAS  Google Scholar 

  9. Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen G, Payet CR (1991) Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 25:177–183

    Article  CAS  Google Scholar 

  10. Petersion AM, Pilz-Allen C, Kolesnikova T, Möhwald H, Shchukin D (2013) Adsorption of arginine−glycine−aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. ACS Appl Mater Interfaces 5:2567–2579

    Article  Google Scholar 

  11. Köppen S, Bronkalla O, Langel W (2008) Molecular simulation of protein–surface interactions. J Phys Chem C 112:13600–13606

    Article  Google Scholar 

  12. Vinu A, Hossain KZ, Kumar GS, Ariga K (2006) Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon 44:530–536

    Article  CAS  Google Scholar 

  13. Nancollas GH (1979) The growth of crystals in solution. Adv Colloid Interf Sci 10:215–252

    Article  CAS  Google Scholar 

  14. Demopoulos GP (2009) Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy 96:199–214

    Article  CAS  Google Scholar 

  15. Xu Y, Schwartz FW (1994) Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Technol 28:1472–1480

    Article  CAS  Google Scholar 

  16. Jimenez-Izal E, Chiatti F, Corno M, Rimola A, Ugliengo P (2012) Glycine adsorption at nonstoichiometric (010) hydroxyapatite surfaces: a B3LYP study. J Phys Chem C 116:14561–14567

    Article  CAS  Google Scholar 

  17. Jahromi MT, Yao G, Cerruti M (2013) The importance of amino acid interactions in the crystallization of hydroxyapatite. J R Soc Interface 10:1–14

    Google Scholar 

  18. Jahromi MT, Cerruti M (2015) Amino acid/ion aggregate formation and their role in hydroxyapatite precipitation. Cryst Growth Des 15:1096–1104

    Article  Google Scholar 

  19. Rimola A, Costa D, Sodupe M, Lambert J-F, Ugliengo P (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113:4216–4313

    Article  CAS  Google Scholar 

  20. Rimola A, Sodupe M, Ugiengo P (2009) Affinity scale for the interaction of amino acids with silica surfaces. J Phys Chem C 113:5741–5750

    Article  CAS  Google Scholar 

  21. Lomenech C, Bery G, Costa D, Stievano L, Lambert J-F (2005) Theoretical and experimental study of the adsorption of neutral glycine on silica from the gas phase. Chem Phys Chem 6:1061–1070

    Article  CAS  Google Scholar 

  22. Folliet N, Gervais C, Costa D, Laurent G, Babonneau F, Stievano L, Lambert J-F, Tielens F (2013) A molecular picture of the adsorption of glycine in mesoporous silica through NMR experiments combined with DFT-D calculations. J Phys Chem C 117:4104–4114

    Article  CAS  Google Scholar 

  23. Nonella M, Seeger S (2008) Investigating alanine-silica interaction by means of first-principles molecular-dynamics simulations. Chem Phys Chem 9:414–421

    Article  CAS  Google Scholar 

  24. Rimola A, Como M, Zicovich-Wilson CM, Ugliengo P (2009) Ab initio modeling of protein/biomaterial interactions: competitive adsorption between glycine and water onto hydroxyapatite surfaces. Phys Chem Chem Phys 11:9005–9007

    Article  CAS  Google Scholar 

  25. Rimola A, Como M, Zicovich-Wilson CM, Ugliengo P (2008) Ab initio modeling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surfaces. J Am Chem Soc 130:16181–16183

    Article  CAS  Google Scholar 

  26. Rimola A, Sakhno Y, Bertinetti L, Lelli M, Martra G, Ugliengo P (2011) Toward a surface science model for biology: glycine adsorption on nanohydroxyapatite with well-defined surfaces. J Phys Chem Lett 2:1390–1394

    Article  CAS  Google Scholar 

  27. Roddick-Lanzilotta A, McQuillan AJ (2000) An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO2: implications for the biocompatibility of titanium. J Colloid Interface Sci 227:48–54

    Article  CAS  Google Scholar 

  28. Nosaka AY, Tanaka G, Nosaka Y (2014) Study by use of 1H NMR spectroscopy of the adsorption and decomposition of glycine, leucine, and derivatives in TiO2 photocatalysis. J Phys Chem B 118:7561–7567

    Article  CAS  Google Scholar 

  29. Tran TH, Nosaka AY, Nosaka Y (2006) Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J Phys Chem B 110:25525–25531

    Article  CAS  Google Scholar 

  30. Thomas AG, Syres KL (2012) Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem Soc Rev 41:4207–4217

    Article  CAS  Google Scholar 

  31. Guo Y, Lu X, Zhang H, Weng J, Watari F, Leng Y (2011) DFT study of the adsorption of aspartic acid on pure, N-doped, and Ca-doped rutile (110) surfaces. J Phys Chem C 115:18572–18581

    Article  CAS  Google Scholar 

  32. Li C, Monti S, Ågren H, Carravetta V (2014) Cysteine on TiO2(110): a theoretical study by reactive dynamics and photoemission spectra simulation. Langmuir 30:8819–8828

    Article  CAS  Google Scholar 

  33. Arrouvel C, Diawara B, Costa D, Marcus P (2007) DFT periodic study of the adsorption of glycine on the anhydrous and hydroxylated (0001) surfaces of α-alumina. J Phys Chem C 111:18164–18173

    Article  CAS  Google Scholar 

  34. Berezin NB, Sagdeev KA, Gudin NV, Roev VG, Mezhevich ZV (2005) Electrochemical reduction of zinc complexes from glycinate solutions. Russ J Electrochem 41:203–205

    Article  CAS  Google Scholar 

  35. Irrera S, Costa D, Marcus P (2009) DFT periodic study of adsorption of glycine on the (0001) surface of zinc terminated ZnO. J Mol Struct THEOCHEM 903:49–58

    Article  CAS  Google Scholar 

  36. Costa D, Carrain P-A, Diawara B, Marcus P (2011) Biomolecule-biomaterial interaction: a DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces. Langmuir 27:2747–2760

    Article  CAS  Google Scholar 

  37. Carrain P-A, Costa D, Marcus P (2011) Biomaterial−biomolecule interaction: DFT-D study of glycine adsorption on Cr2O3. J Phys Chem C 115:719–727

    Google Scholar 

  38. Hoffmann MR, Martin ST, Wonyong C, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  39. Yang Y, Lai Y, Zhang Q, Wu K, Zhang L, Lin C, Tang P (2010) A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials. Colloids Surf B 79:309–313

    Article  CAS  Google Scholar 

  40. Weng Y, Song Q, Zhou Y, Zhang L, Wang J, Chen J, Leng Y, Li S, Huang N (2011) Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials 32:1253–1263

    Article  CAS  Google Scholar 

  41. Min L, Cai K, Zhao L, Chen X, Hou Y, Yang Z (2011) Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 12:1097–1105

    Article  Google Scholar 

  42. Miyauchi T, Yamada M, Yamamoto A, Iwasa F, Suzawa T, Kamijo R, Baba K, Ogawa T (2010) The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials 31:3827–3839

    Article  CAS  Google Scholar 

  43. Spadavecchia J, Boujday S, Landoulsi J, Pradier C-M (2011) nPEG-TiO2 nanoparticles: a facile route to elaborate nanostructured surfaces for biological applications. ACS Appl Mater Interfaces 3:2637–2642

    Article  CAS  Google Scholar 

  44. Wu S, Weng Z, Liu X, Yeung KWK, Chu PK (2014) Functionalized TiO2 based nanomaterials for biomedical applications. Adv Funct Mater 24:5464–5481

    Article  CAS  Google Scholar 

  45. Monti S, van Duin ACT, Kim SY, Barone V (2012) Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: computational investigations in the gas phase and in solution. J Phys Chem C 116:5141–5150

    Article  CAS  Google Scholar 

  46. Sultan AM, Hughes ZE, Walsh TR (2014) Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides. Langmuir 30:13321–13329

    Article  CAS  Google Scholar 

  47. Zhao YL, Koppen S, Frauenheim T (2011) An SCC-DFTB/MD study of the adsorption of zwitterionic glycine on a geminal hydroxylated silica surface in an explicit water environment. J Phys Chem C 115:9615–9621

    Article  CAS  Google Scholar 

  48. Costa D, Tougerti A, Tielens F, Gervais C, Stievano L, Lambert JF (2008) DFT study of the adsorption of microsolvated glycine on a hydrophilic amorphous silica surface. Phys Chem Chem Phys 10:6360–6368

    Article  CAS  Google Scholar 

  49. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  50. O’Rourke C, Bowler DR (2010) Adsorption of thiophene-conjugated sensitizers on TiO2 anatase (101). J Phys Chem C 114:20240–20248

    Article  Google Scholar 

  51. Rahaman O, van Duin ACT, Goddard ШWA, Doren DJ (2011) Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. J Phys Chem B 115:249–261

    Article  CAS  Google Scholar 

  52. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  54. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  55. Moellmann J, Grimme S (2014) DFT-D3 study of some molecular crystals. J Phys Chem C 118:7615–7621

    Article  CAS  Google Scholar 

  56. Risthaus T, Grimme S (2013) Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J Chem Theory Comput 9:1580–1591

    Article  CAS  Google Scholar 

  57. Wang J, Yang M, Deng D, Qiu S (2017) The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study. J Mol Model 23:262

    Article  Google Scholar 

  58. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  59. Yu D, Zhou W, Liu Y, Zhou B, Wu P (2015) Density functional theory study of the structural, electronic and optical properties of C-doped anatase TiO2(101) surface. Phys Lett A 379:1666–1670

    Article  CAS  Google Scholar 

  60. Falzon CT, Wang F, Pang W (2006) Orbital signatures of methyl in L-alanine. J Phys Chem B 110:9713–9719

    Article  CAS  Google Scholar 

  61. Santos AFLO, Notario R, da Silva MAVR (2014) Thermodynamic and conformational study of proline stereoisomers. J Phys Chem B 118:10130–10141

    Article  CAS  Google Scholar 

  62. Garcia AR, de Barros RB, Lourenço JP, Ilharco LM (2008) The infrared spectrum of solid L-alanine: influence of pH-induced structural changes. J Phys Chem A 112:8280–8287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Education Committee of Sichuan Province (18ZB0487) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Liang or Laicai Li.

Electronic supplementary material

ESM 1

Adsorption structures and energies (eV, below every picture) for AAs on anatase TiO2 (101) surface generated from MD calculation and further optimized at DFT level. Different local minimum obtained from DFT calculations and tests with DFT + U. (DOC 3058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Li, K., Chen, X. et al. Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study. J Mol Model 24, 107 (2018). https://doi.org/10.1007/s00894-018-3641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3641-8

Keywords

Navigation