Skip to main content
Log in

Reactive molecular dynamics simulations on the thermal decomposition of poly alpha-methyl styrene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using molecular dynamics simulations with ReaxFF reactive force field, the thermal decomposition mechanism of poly alpha-methyl styrene (PAMS) materials and the effects of heating rate and impurity fluorobenzene on PAMS thermal decompositions are studied. The results show that: 1) Pyrolysis mechanism of PAMS consists of initiation and propagation processes. In the initiation stage, random scissions of C-C backbone produce fragments, and in the propagation stage, depolymerizing reactions generate monomers and other products. 2) Higher decomposition temperature is needed for greater heating rate. 3) The presence of impurity fluorobenzene retards thermal decomposition of PAMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang Z-W, Qi X-B, Li B (2012) Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Phys Sin 61(14):145204–145208

    Google Scholar 

  2. Letts SA, Fearon EM, Allison LM, Cook R (1996) Fabrication of special inertial confinement fusion targets using a depolymerizable mandrel technique. J Vac Sci Technol A 14(3):1015–1018

    Article  CAS  Google Scholar 

  3. Zhang Z-W, Li B, Tang Y-J, Chen S-F, Liu Y-Y (2007) Thermal pyrolysis products of poly-alpha-methylstyrene. High Power Laser Part Beams 19(08):1321–1324

  4. Zhang Z, Huang Y, Luo X, Qi X, Chen S, Liu Y, Li B (2010) Thermal gravity analysis of poly(alpha-methylstyrene) degradation temperature. High Power Laser Part Beams 22(9):2079–2081

  5. Ye L, Chen S, Huang Y, Li B, Zhang Z, Yang J (2012) Thermal degradation kinetics of poly-alpha-methylstyrene. High Power Laser Part Beams 24(10):2400–2404

  6. Fu J, Sun W, Jiang Y, Fan Q, Zhang Y, Zhang Z (2014) A molecular based kinetic study on the thermal decomposition of poly-α-methyl styrene. Polym Degrad Stab 110:415–421

    Article  CAS  Google Scholar 

  7. Beyler CL, Hirschler MM (2002) Thermal decomposition of polymers. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Quincy, Ma, pp 110–131

  8. Yu T, Gao Y, Wang B, Dai X, Jiang W, Song R, Zhang Z, Jin M, Tang Y, Wang Z (2015) Depolymerization of free-radical polymers with spin migrations. ChemPhysChem 16(15):3308–3312

    Article  CAS  Google Scholar 

  9. Endo K, Hayashi K, Ida T, Takemura T (2014) IR and Py-GC/MS spectral simulation of polymer film by quantum chemical and quantum molecular dynamics calculations using the polymer models. Russ J Phys Chem A 88(13):2370–2379

    Article  CAS  Google Scholar 

  10. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic, New York

  11. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  CAS  Google Scholar 

  12. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  13. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  14. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase ApplicationsOverview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  15. Sun H, Jin Z, Yang C, Akkermans RLC, Robertson SH, Spenley NA, Miller S, Todd SM (2016) COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model 22(2):1–10

    Article  Google Scholar 

  16. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000

    Article  CAS  Google Scholar 

  17. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458–9471

    Article  CAS  Google Scholar 

  18. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409

    Article  Google Scholar 

  19. Chenoweth K, Cheung S, van Duin ACT, Goddard WA, Kober EM (2005) Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc 127(19):7192–7202

    Article  CAS  Google Scholar 

  20. Zhang W, van Duin ACT (2015) ReaxFF reactive molecular dynamics simulation of functionalized poly(phenylene oxide) anion exchange membrane. J Phys Chem C 119(49):27727–27736

    Article  CAS  Google Scholar 

  21. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, van Duin ACT (2016) The ReaxFF reactive force-field: development, applications and future directions. Npj Comput Mater 2:15011

  22. Lu X, Wang X, Li Q, Huang X, Han S, Wang G (2015) A ReaxFF-based molecular dynamics study of the pyrolysis mechanism of polyimide. Polym Degrad Stab 114:72–80

    Article  CAS  Google Scholar 

  23. Movahed FS, Cheng G, Venkatachari BS, Cozmuta I (2001) Atomistic simulation of thermal decomposition of crosslinked and non-crosslinked phenolic resin chains. In: 42nd AIAA Thermophysics Conference. American Institute of Aeronautics and Astronautics, pp 1–13.

  24. Liu X, Li X, Liu J, Wang Z, Kong B, Gong X, Yang X, Lin W, Guo L (2014) Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics. Polym Degrad Stab 104:62–70

    Article  CAS  Google Scholar 

  25. Min K, Kim Y, Goyal S, Lee SH, McKenzie M, Park H, Savoy ES, Rammohan AR, Mauro JC, Kim H, Chae K, Lee HS, Shin J, Cho E (2016) Interfacial adhesion behavior of polyimides on silica glass: a molecular dynamics study. Polymer 98:1–10

    Article  CAS  Google Scholar 

  26. Woodcock LV (1971) Isothermal molecular dynamics calculations for liquid salts. Chem Phys Lett 10(3):257–261

    Article  CAS  Google Scholar 

  27. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  28. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393

    Article  CAS  Google Scholar 

  29. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  30. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  CAS  Google Scholar 

  31. Bond SD, Leimkuhler BJ, Laird BB (1999) The Nosé–Poincaré method for constant temperature molecular dynamics. J Comput Phys 151(1):114–134

    Article  CAS  Google Scholar 

  32. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643

    Article  Google Scholar 

  33. Samoletov AA, Dettmann CP, Chaplain MAJ (2007) Thermostats for “slow” configurational modes. J Stat Phys 128(6):1321–1336

    Article  Google Scholar 

  34. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

    Article  Google Scholar 

  35. Leimkuhler B, Noorizadeh E, Theil F (2009) A gentle stochastic thermostat for molecular dynamics. J Stat Phys 135(2):261–277

    Article  CAS  Google Scholar 

  36. Leimkuhler B, Reich S (2009) A metropolis adjusted Nosé-Hoover thermostat. ESAIM: M2AN 43(4):743–755

    Article  Google Scholar 

  37. Chenoweth K, van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040–1053

    Article  CAS  Google Scholar 

  38. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164

    Article  Google Scholar 

  39. Fetters LJ, Lohse DJ, Colby RH (2007) Chain dimensions and entanglement Spacings. In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, pp 447–454

    Chapter  Google Scholar 

  40. Mueller JE, van Duin ACT, Goddard WA (2010) Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition. J Phys Chem C 114(12):5675–5685

    Article  CAS  Google Scholar 

  41. Zou C, Raman S, van Duin ACT (2014) Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils. J Phys Chem B 118(23):6302–6315

    Article  CAS  Google Scholar 

  42. Plimpton S (1995) Fast Parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  43. Aktulga HM, Fogarty JC, Pandit SA, Grama AY (2012) Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput 38(4–5):245–259

    Article  Google Scholar 

  44. Kim S-Y, van Duin ACT, Kubicki JD (2013) Molecular dynamics simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl, methanol, and formic acid using a reactive force field. J Mater Res 28(03):513–520

  45. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201(4914):68–69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Ministry of Education “chunhui plan” (Grant No: Z2016160) and a fund from the research center of laser fusion, CAEP of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Sun, W., Fu, J. et al. Reactive molecular dynamics simulations on the thermal decomposition of poly alpha-methyl styrene. J Mol Model 23, 179 (2017). https://doi.org/10.1007/s00894-017-3342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3342-8

Keywords

Navigation