Skip to main content

Advertisement

Log in

Structural insights into ligand binding of PGRP1 splice variants in Chinese giant salamander (Andrias davidianus) from molecular dynamics and free energy calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors of the innate immune system. A number of PGRP splicing variants produced by alternative splicing of PGRP genes have been reported. However, several important aspects of interactions between PGRP splice variants and their ligands are still unclear. In the present study, three dimensional models of salamander PGRP1 (adPGRP1) and its splice variant (adPGRP1a) were constructed, and their key amino acids involved in interacting with PGNs were analyzed. The results revealed that adPGRP1a has a typical PGRPs structure containing five β-sheets and four α-helices, while adPGRP1 contained five β-sheets and only one α-helix due to the lack of 51 amino acids at its C-terminus. Molecular docking revealed that van der Waals and Coulombic interactions contributed to interactions in the protein–ligand complex. Further binding energy of adPGRP-PGNs computed by the MM-PBSA method revealed that adPGRP1a and adPGRP1 might selectively bind to different PGNs; the former might selectively bind Dap-type PGNs and the latter both types of PGNs. In addition, the binding energy of each residue of adPGRP1a and adPGRP1 was also calculated, revealing that residues involved in the interaction of protein–ligand complexes were different in adPGRP1a and adPGRP1. These results provided a first insight into the potential basis for interaction between PGRPs generated by alternative splicing and PGN derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–c
Fig. 3a–c
Fig. 4
Fig. 5a–c
Fig. 6
Fig. 7a,b
Fig. 8a,b
Fig. 9

Similar content being viewed by others

References

  1. Barbé F, Douglas T, Saleh M (2014) Advances in Nod-like receptors (NLR) biology. Cytokine Growth Factor Rev 25:681–697. doi:10.1016/j.cytogfr.2014.07.001

    Article  Google Scholar 

  2. Medzhitov R, Janeway JC (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97. doi:10.1034/j.1600-065X.2000.917309.x

    Article  CAS  Google Scholar 

  3. Janeway JC, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216. doi:10.1146/annurev.immunol.20.083001.084359

    Article  CAS  Google Scholar 

  4. Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 1758:1513–1522. doi:10.1016/j.bbamem.2006.05.017

    Article  CAS  Google Scholar 

  5. Dziarski R (2004) Peptidoglycan recognition proteins (PGRPs). Mol Immunol 40:877–886. doi:10.1016/j.molimm.2003.10.011

    Article  CAS  Google Scholar 

  6. Yoshida H, Kinoshita K, Ashida M (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 271:13854–13860

    Article  CAS  Google Scholar 

  7. Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 97:13772–13777. doi:10.1073/pnas.97.25.13772

    Article  CAS  Google Scholar 

  8. Su J, Ni D, Song L, Zhao L, Qiu I (2007) Molecular cloning and characterization of a short peptidoglycan recognition protein (CfPGRP-S1) cDNA from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 23:646–656. doi:10.1016/j.fsi.2007.01.023

    Article  CAS  Google Scholar 

  9. Coteur G, Mellroth P, De Lefortery C, Gillan D, Dubois P, Communi D (2007) Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). Dev Comp Immunol 31:790–804. doi:10.1016/j.dci.2006.11.006

    Article  CAS  Google Scholar 

  10. Chang MX, Nie P, Wei LL (2007) Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with finding of multiple PGRP homologs in teleost fish. Mol Immunol 44:3005–3023. doi:10.1016/j.molimm.2006.12.029

    Article  CAS  Google Scholar 

  11. Qi ZT, Zhang QH, Wang ZS, Wang AM, Huang B, Chang MX, Nie P (2011) Cloning and expression of a long type peptidoglycan recognition protein (PGRP-L) from Xenopus tropicalis. Zool Res 32:371–378. doi:10.3724/SP.J.1141.2011.04371

    CAS  Google Scholar 

  12. Liu C, Xu Z, Gupta D, Dziarski R (2001) Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J Biol Chem 276:34686–34694

    Article  CAS  Google Scholar 

  13. Garver LS, Wu J, Wu LP (2006) The peptidoglycan recognition protein PGRP-SCa is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc Natl Acad Sci USA 103:660–665. doi:10.1073/pnas.0506182103

    Article  CAS  Google Scholar 

  14. Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH, Kurata S, Silverman N (2006) PGRP-LC and PGRP-LE have essential yet distinct function in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7:715–723. doi:10.1038/ni1356

    Article  CAS  Google Scholar 

  15. Paredes JC, Welchman DP, Poidevin M, Lemaitre B (2011) Negative regulation by amidase PGRPs shapes the Drosophila antibacterial responses and protects the fly from innocuous infection. Immunity 35:770–779. doi:10.1016/j.immuni.2011.09.018

    Article  CAS  Google Scholar 

  16. Li X, Wang S, Qi J, Echtenkamp SF, Chatterjee R, Wang M, Boons GJ, Dziarski R, Gupta D (2007) Zebrafish peptidoglycan recognition proteins are bactericidal amidases for defense against bacterial infections. Immunity 27:518–529. doi:10.1016/j.immuni.2007.07.020

    Article  Google Scholar 

  17. Zhang Y, van der Fits L, Voerman JS, Melief MJ, Laman JD, Wang M, Wang H, Wang M, Li X, Walls CD, Gupta D, Dziarski R (2005) Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2. Biochim Biophys Acta 1752:34–46. doi:10.1016/j.bbapap.2005.07.001

    Article  CAS  Google Scholar 

  18. Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila Toll is activated by gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 13:756–759. doi:10.1038/414756a

    Article  Google Scholar 

  19. Leone P, Bischoff V, Kellenberger C, Hetru C, Royer J, Roussel A (2008) Crystal structure of Drosophila PGRP-SD suggests binding to Dap-type but not lysine-type peptidoglycan. Mol Immunol 45:2521–2530. doi:10.1016/j.molimm.2008.01.015

    Article  CAS  Google Scholar 

  20. Cho JH, Fraser IP, Fukase K, Kusumoto S, Fujimoto Y, Stahl GL, Ezekowitz AB (2005) Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106:2551–2558. doi:10.1182/blood-2005-02-0530

    Article  CAS  Google Scholar 

  21. Tydell CC, Yount N, Tran D, Yuan J, Selsted ME (2002) Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. J Biol Chem 277:19658–19664

    Article  CAS  Google Scholar 

  22. Meister S, Agianian B, Turlure F, Relogio A, Morlais I, Kafatos FC, Christophides GK (2009) Anopheles gambiae PGRP-LC mediated defense against bacterial modulates infections with malaria parasites. PLoS Pathog 5:e1000542. doi:10.1371/journal.ppat.1000542

    Article  Google Scholar 

  23. Yu ZL, Li JH, Xue NN, Nie P, Chang MX (2014) Expression and functional characterization of PGRP6 splice variants in grass carp, Ctenopharyngodon idella. Dev Comp Immunol 47:264–274. doi:10.1016/j.dci.2014.08.006

    Article  CAS  Google Scholar 

  24. Kibardin AV, Mirkina LL, Baranova EV, Zakeyeva LR, Georgiev GP, Kiselev SL (2003) The differentially spliced mouse tagL gene, homolog of tag7/PGRP gene family in mammals and Drosophila, can recognize gram-positive and gram-negative bacterial cell wall independently of T phage lysozyme homology domain. J Mol Biol 326:467–474. doi:10.1016/S0022-2836(02)01401-8

    Article  CAS  Google Scholar 

  25. Kaneko T, Goldman WE, Mellroth P, Steriner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20:637–649. doi:10.1016/S1074-7613(04)00104-9

    Article  CAS  Google Scholar 

  26. Qi ZT, Zhang QH, Wang ZS, Ma TY, Zhou J, Holland JW, Gao Q (2016) Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): immune modulation in response to Aeromonas hydrophila infection. Vet Immunol Immunop 169:85–95. doi:10.1016/j.vetimm.2015.11.004

    Article  CAS  Google Scholar 

  27. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701

    Article  CAS  Google Scholar 

  28. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315

    Article  CAS  Google Scholar 

  29. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein Identification and Analysis Tools in the ExPASy Server. Methods Mol Biol 112:531–552

    CAS  Google Scholar 

  30. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The pfam protein families database. Nucleic Acids Res 40:D290–D301. doi:10.1093/nar/gkr1065

    Article  CAS  Google Scholar 

  31. Levine A, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305. doi:10.1093/nar/gkr931

    Article  Google Scholar 

  32. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C et al (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–229. doi:10.1093/nar/gkq1189

    Article  CAS  Google Scholar 

  33. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi:10.1186/1471-2105-9-40

    Article  Google Scholar 

  34. Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305–3307. doi:10.1093/nar/gkg557

    Article  CAS  Google Scholar 

  35. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK-a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  36. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci 2:1511–1519. doi:10.1002/pro.5560020916

    Article  CAS  Google Scholar 

  37. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85. doi:10.1038/356083a0

    Article  Google Scholar 

  38. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica D 66:12–21. doi:10.1107/S0907444909042073

    Article  CAS  Google Scholar 

  39. Wiederstein M, Sippl MJ (2007) ProSA-web, interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acid Res 35:407–410. doi:10.1093/nar/gkm290

    Article  Google Scholar 

  40. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086. doi:10.1110/ps.0236803

    Article  CAS  Google Scholar 

  41. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725. doi:10.1002/prot.21123

    Article  CAS  Google Scholar 

  42. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through muti-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. doi:10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  43. Kumari R, Kumar R, Consortium OSDD, Lynn A (2014) g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. doi:10.1021/ci500020m

    Article  CAS  Google Scholar 

  44. Sahoo BR, Dubey PK, Goyal S, Bhoi GK, Lenka SK, Maharana J, Pardhan SK, Kataria RS (2014) Exploration of the binding modes of buffalo PGRP1 receptor complexed with meso-diaminopimelic acid and lysine-type peptidoglycans by molecular dynamics simulation and free energy calculation. Chem Biol Interact 220:255–268. doi:10.1016/j.cbi.2014.06.028

    Article  CAS  Google Scholar 

  45. Guan R, Wang Q, Sundberg EJ, Mariuzza RA (2005) Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 A resolution. J Mol Biol 347:683–691. doi:10.1016/j.jmb.2005.01.070

    Article  CAS  Google Scholar 

  46. Guan R, Malchiodi EL, Qian W, Schuck P, Mariuzza RA (2004) Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Ialpha. J Biol Chem 279:31873–31882. doi:10.1074/jbc.M404920200

    Article  CAS  Google Scholar 

  47. Genheden S, Rede U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. doi:10.1517/17460441.2015.1032936

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 31302221, 31272666 and 31470130) and Jiangsu Province (Grant no. BK2011418 and BK20151297), and partially by the Major Projects of Natural Science Research in Universities and Colleges in Jiangsu Province (Grant no. 15KJA240001). Z.Q. was financially supported by the “Qinglan” project of Jiangsu province of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhitao Qi or Rong Shao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2588 kb)

ESM 2

(DOCX 2588 kb)

ESM 3

(DOCX 2588 kb)

ESM 4

(DOCX 2588 kb)

ESM 5

(DOCX 2588 kb)

ESM 6

(DOCX 2588 kb)

ESM 7

(DOCX 2588 kb)

ESM 8

(DOCX 13 kb)

ESM 9

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Z., Meng, F., Zhang, Q. et al. Structural insights into ligand binding of PGRP1 splice variants in Chinese giant salamander (Andrias davidianus) from molecular dynamics and free energy calculations. J Mol Model 23, 135 (2017). https://doi.org/10.1007/s00894-017-3315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3315-y

Keywords

Navigation