Skip to main content
Log in

A theoretical study of the inhibition effect of PAMAM molecule on silica scale

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the molecular modeling method was performed to study adsorption interaction between PAMAM molecules of different generations and silicic acid molecules, and the inhibition effect on silica scale were discussed. The results show that adsorption energies of PAMAM molecule of generation 1.0 with amine-terminated groups are stronger than those of generation 1.5 with terminated carboxyl group. The composition of adsorption interactions are the dominating electrostatic interactions and van de Waals interactions as well as H-bond interactions. It is qualitatively discussed that the inhibition effect of generation 1.0 on silica scale is stronger than that of generation 1.5 in the neutral solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mora‐Fonz MJ, Catlow CRA, Lewis DW (2005) Oligomerization and cyclization processes in the nucleation of microporous silicas. Angewandte Chemie International Edition 44 (20):3082-3086

  2. Bremere I, Kennedy M, Mhyio S, Jaljuli A, Witkamp G-J, Schippers J (2000) Prevention of silica scale in membrane systems: removal of monomer and polymer silica. Desalination 132(1):89–100

    Article  CAS  Google Scholar 

  3. Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic. Polym J 17(1):117–132

    Article  CAS  Google Scholar 

  4. Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30(3):294–324

    Article  CAS  Google Scholar 

  5. Esfand R, Tomalia DA (2001) Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436

    Article  CAS  Google Scholar 

  6. Yiyun C, Jiepin Y (2005) Effect of polyamidoamine dendrimers in decolorising triarylmethane dye effluent. Color Technol 121(2):72–75

    Article  Google Scholar 

  7. Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 39(5):1366–1377

    Article  CAS  Google Scholar 

  8. Zhang B, Sun P, Chen F, Li F (2012) Synergistic inhibition effect of polyaminoamide dendrimers and polyepoxysuccinic acid on silica polymerization. Colloids Surf A Physicochem Eng Asp 410:159–169

    Article  CAS  Google Scholar 

  9. Demadis KD (2005) A structure/function study of polyaminoamide dendrimers as silica scale growth inhibitors. J Chem Technol Biotechnol 80(6):630–640

    Article  CAS  Google Scholar 

  10. Mavredaki E, Neofotistou E, Demadis KD (2005) Inhibition and dissolution as dual mitigation approaches for colloidal silica fouling and deposition in process water systems: functional synergies. Ind Eng Chem Res 44(17):7019–7026

    Article  CAS  Google Scholar 

  11. Neofotistou E, Demadis KD (2004) Use of antiscalants for mitigation of silica (SiO 2) fouling and deposition: fundamentals and applications in desalination systems. Desalination 167:257–272

    Article  CAS  Google Scholar 

  12. Hädicke E, Rieger J, Rau IU, Boeckh D (1999) Molecular dynamics simulations of the incrustation inhibition by polymeric additives. Phys Chem Chem Phys 1(17):3891–3898

    Article  Google Scholar 

  13. Chen C, Lei W, Xia M, Wang F, Gong X (2013) Molecular modeling of several phosphonates onto the stepped calcite (011) surface. Desalination 309:208–212

    Article  CAS  Google Scholar 

  14. Chen C, Xia M, Wu L, Zhou C, Wang F (2012) Modeling the interaction of seven bisphosphonates with the hydroxyapatite (100) face. J Mol Model 18(9):4007–4012

    Article  CAS  Google Scholar 

  15. Shi W, Xia M, Lei W, Wang F (2013) Molecular dynamics study of polyether polyamino methylene phosphonates as an inhibitor of anhydrite crystal. Desalination 322:137–143

    Article  CAS  Google Scholar 

  16. Shi W-Y, Ding C, Yan J-L, Han X-Y, Lv Z-M, Lei W, Xia M-Z, Wang F-Y (2012) Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces. Desalination 291:8–14

    Article  CAS  Google Scholar 

  17. Zhang S, Lei W, Xia M, Wang F (2005) QSAR study on N-containing corrosion inhibitors: quantum chemical approach assisted by topological index. J Mol Struct THEOCHEM 732(1):173–182

    Article  CAS  Google Scholar 

  18. Discover/Accelrys (2007) Materials studio 4.0. Discover/Accelrys, San Diego

  19. Sheikholeslami R, Tan S (1999) Effects of water quality on silica fouling of desalination plants. Desalination 126(1):267–280

    Article  CAS  Google Scholar 

  20. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  21. Chen G, Xia M, Lei W, Wang F, Gong X (2014) Prediction of crystal morphology of cyclotrimethylene trinitramine in the solvent medium by computer simulation: a case of cyclohexanone solvent. J Phys Chem A 118(49):11471–11478

    Article  CAS  Google Scholar 

  22. Chen G, Xia M, Lei W, Wang F, Gong X (2013) A study of the solvent effect on the morphology of RDX crystal by molecular modeling method. J Mol Model 19(12):5397–5406

    Article  CAS  Google Scholar 

  23. Chen G, Xia M, Lei W, Wang F, Gong X (2014) Molecular dynamics investigation of the effect of solvent adsorption on crystal habits of hexogen. Can J Chem 92(9):849–854

    Article  CAS  Google Scholar 

  24. Zhong T, Ai P, Zhou J (2011) Structures and properties of PAMAM dendrimer: A multi-scale simulation study. Fluid Phase Equilib 302(1):43–47

    Article  CAS  Google Scholar 

  25. Martinho N, Florindo H, Silva L, Brocchini S, Zloh M, Barata T (2014) Molecular modeling to study dendrimers for biomedical applications. Molecules 19(12):20424–20467

    Article  Google Scholar 

  26. Desiraju GR (2002) Hydrogen bridges in crystal engineering: interactions without borders. Acc Chem Res 35(7):565–573

    Article  CAS  Google Scholar 

  27. Li C, Choi P (2008) Molecular dynamics study on the effect of solvent adsorption on the morphology of glycothermally produced α-Al2O3 particles

  28. Vail JG (1952) Soluble silicates. Soil Sci 74(5):407

    Article  Google Scholar 

  29. Chan S, Chen Z, He P (1995) Effect of ferric chloride on silica fouling. J Heat Transf 117(2):323–328

    Article  CAS  Google Scholar 

  30. Belton DJ, Deschaume O, Perry CC (2012) An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J 279(10):1710–1720

    Article  CAS  Google Scholar 

  31. Lee I, Athey BD, Wetzel AW, Meixner W, Baker JR (2002) Structural molecular dynamics studies on polyamidoamine dendrimers for a therapeutic application: effects of pH and generation. Macromolecules 35(11):4510–4520

    Article  CAS  Google Scholar 

  32. Demadis KD, Neofotistou E (2007) Synergistic effects of combinations of cationic polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica formation: a bioinspired approach. Chem Mater 19(3):581–587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by “Jiangsu Youth Funding Program SBK2015041911”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Bai, N., Zhang, Y. et al. A theoretical study of the inhibition effect of PAMAM molecule on silica scale. J Mol Model 23, 32 (2017). https://doi.org/10.1007/s00894-017-3208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3208-0

Keywords

Navigation