Skip to main content
Log in

DFT study on the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conversion of 2-phenylbenzimidazole using o-phenylenediamine and benzaldehyde can be improved significantly under β-cyclodextrin (β-CD). The density functional theory (DFT) method was applied to study the whole process. According to energy parameters (binding energy, deformation energy) and structural deformation, entry models and the reaction process can be pinpointed, with o-phenylenediamine embedding β-CD from a wide rim, and then benzaldehyde passing into the inclusion from the narrow rim. Subsequently, natural bonding orbital (NBO), Mulliken charge, frontier orbital, FuKui function and nuclear magnetic resonance (NMR) methods were employed to reveal the mechanism of electron transfer. The results illustrate that β-CD plays a catalytic role in synthesis reaction mechanism on the secondary side, improving the reactivity and selectivity of the process.

Density functional theory study of the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5a,b
Fig. 6a–d
Fig. 7

Similar content being viewed by others

References

  1. Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233

    Article  CAS  Google Scholar 

  2. Hasegawa Y, Inoue Y, Deguchi K, Ohk S, Tansho M, Shimizu T, Yazawa K (2012) Molecular dynamics of a polyaniline/β-cyclodextrin complex investigated by 13C solid-state NMR. J Phys Chem B 116:1758–1764

    Article  CAS  Google Scholar 

  3. Li Z, Couzijn EPA, Zhang X (2012) Intrinsic properties of α-cyclodextrin complexes with benzoate derivatives in the gas phase: an experimental and theoretical study. J Phys Chem B 116:943–950

    Article  CAS  Google Scholar 

  4. Dsouza RN, Pischel U, Nau WM (2011) Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev 111:7941–7980

    Article  CAS  Google Scholar 

  5. Abou-Zied OK, Al-Hinai AT (2006) Caging effects on the ground and excited states of 2, 2′-bipyridine-3, 3′-diol embedded in cyclodextrins. J Phys Chem A 110:7835–7840

    Article  CAS  Google Scholar 

  6. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754

    Article  CAS  Google Scholar 

  7. Yang Z, Zeng H, Zhou X, Ji H (2012) Mechanism into selective oxidation of cinnamaldehyde using β-cyclodextrin polymer as phase-transfer catalyst. Tetrahedron 68:5912–5919

    Article  CAS  Google Scholar 

  8. Takahashi K (1998) Organic reactions mediated by cyclodextrins. Chem Rev 98:2013–2034

    Article  CAS  Google Scholar 

  9. Easton CJ (2005) Cyclodextrin-based catalysts and molecular reactors. Pure Appl Chem 77:1865–1871

    Article  CAS  Google Scholar 

  10. Mukhopadhyay M, Banerjee D, Mukherjee S (2006) Proton-transfer reaction of 4-methyl 2, 6-diformyl phenol in cyclodextrin nanocage. J Phys Chem A 110:12743–12751

    Article  CAS  Google Scholar 

  11. Murthy SN, Madhav B, Kumar AV, Rao KR, Nageswar YVD (2009) Facile and efficient synthesis of 3, 4, 5-substituted furan-2 (5H)-ones by using β-cyclodextrin as reusable catalyst. Tetrahedron 65:5251–5256

    Article  Google Scholar 

  12. Shin JA, Lim YG, Lee KH (2012) Copper-catalyzed azide–alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst. J Org Chem 77:4117–4122

    Article  CAS  Google Scholar 

  13. Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98:1997–2011

    Article  CAS  Google Scholar 

  14. Bellia F, La Mendola D, Pedone C, Rizzarelli E, Saviano M, Vecchio G (2009) Selectively functionalized cyclodextrins and their metal complexes. Chem Soc Rev 38:2756–2781

    Article  CAS  Google Scholar 

  15. Kim JS, Gatto B, Yu C, Liu A, Liu LF, LaVoie EJ (1996) Substituted 2, 5′-bi-1 H-benzimidazoles: topoisomerase I inhibition and cytotoxicity. J Med Chem 39:992–998

    Article  CAS  Google Scholar 

  16. Gravatt GL, Baguley BC, Wilson WR, Denny WA (1994) DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogs of pibenzimol (Hoechst 33258). J Med Chem 37:4338–4345

    Article  CAS  Google Scholar 

  17. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930

    Article  CAS  Google Scholar 

  18. Lewis JC, Wiedemann SH, Bergman RG, Ellmanet JA (2004) Arylation of heterocycles via rhodium-catalyzed C-H bond functionalization. Org Lett 6:35–38

    Article  CAS  Google Scholar 

  19. Matsushita H, Lee SH, Joung M, Clapham B, Janda KD (2004) Smart cleavage reactions: the synthesis of benzimidazoles and benzothiazoles from polymer-bound esters. Tetrahedron Lett 45:313–316

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Revision B.05. Gaussian Inc, Pittsburgh

    Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Ji HB, Huang LQ, Shen HM, Zhou XT (2011) β-Cyclodextrin-promoted synthesis of 2-phenylbenzimidazole in water using air as an oxidant. Chem Eng J 167:349–354

    Article  CAS  Google Scholar 

  24. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wires Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  25. Yan Z, Zuo Z, Lv X, Li Z, Li Z, Huang W (2012) Adsorption of NO on MoO3 (0 1 0) surface with different location of terminal oxygen vacancy defects: a density functional theory study. Appl Surf Sci 258:3163–3167

    Article  CAS  Google Scholar 

  26. Prabhu AAM, Sankaranarayanan RK, Venkatesh G, Rajendiran N (2012) Dual fluorescence of fast blue RR and fast violet B: effects of solvents and cyclodextrin complexation. J Phys Chem B 116:9061–9074

    Article  CAS  Google Scholar 

  27. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  28. Fu R, Lu T, Chen FW (2014) Comparing methods for predicting the reactive site of electrophilic substitution. Acta Phys Chim Sin 30:628–639

    CAS  Google Scholar 

  29. Helgaker T, Wilson PJ, Amos RD, Handy NC (2000) Nuclear shielding constants by density functional theory with gauge including atomic orbitals. J Chem Phys 113:2983–2989

    Article  CAS  Google Scholar 

  30. Olah GA, Heiner T, Rasul G, Prakash GKS (1998) 1H, 13C, 15N NMR and theoretical study of protonated carbamic acids and related compounds. J Org Chem 63:7993–7998

    Article  CAS  Google Scholar 

  31. Desiraju GR (1996) The C-H⋯O hydrogen bond: structural implications and supramolecular design. Acc Chem Res 29:441–449

    Article  CAS  Google Scholar 

  32. Chocholoušová J, Špirko V, Hobza P (2004) First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯O and improper blue-shifted C–H⋯O hydrogen bonds. Phys Chem Chem Phys 6:37–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Wang, X., Li, W. et al. DFT study on the effects of β-cyclodextrin in synthesis of 2-phenylbenzimidazole via benzaldehyde and o-phenylenediamine. J Mol Model 22, 292 (2016). https://doi.org/10.1007/s00894-016-3161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3161-3

Keywords

Navigation