Skip to main content
Log in

DFT analysis of the electronic structure of Fe(IV) species active in nitrene transfer catalysis: influence of the coordination sphere

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nitrene transfer reactions to various hydrocarbon molecules can be efficiently catalyzed by Fe complexes through a mechanism reminiscent of the oxygen transfer function of oxygenase enzymes. Such enzymes exhibit a high-valent iron oxo Fe(IV) = O as the active species, and it has also been proposed that an analogous species, i.e., Fe(IV) = NR (NR being the nitrene group) is responsible for the nitrene transfer activity. We describe here the influence of the Fe(IV) coordination sphere on some key parameters for nitrene transfer efficacy, such as the spin state of the Fe(IV) cation, the electronic affinity, and the bond dissociation energy of the NHR moiety. We explore here the electronic properties of Fe(IV) = NTs (NTs = tolylsulfonylimido group) mononuclear complexes with ligands involving phenolate and nitrogen donor groups, as catalytic properties with such ligands have been found to be quite promising. Six tetradentate ligands were studied, which derive from three different scaffolds: 2-methylenepyridine-N,N-bis(2-methylene-4,6-dichlorophenol) and 2-methylenepyridine-N,N-bis(2-methylene-4,6-dimethylphenol), N,N-dimethyl-N’,N’-bis(2-methylene-4,6-dichlorophenol) ethylenediamine, and N,N-dimethyl-N’,N’- bis(2-methylene-4,6-dimethylphenol) ethylenediamine, N,N’-bis(2-methylene-4,6-dichlorophenol)-N,N’-dimethyl-1,2-diaminoethane and N,N’-bis(2-methylene-4,6-dimethylphenol)-N,N’-dimethyl-1,2-diaminoethane. Thanks to thorough DFT computations, we present some rationalization of the electronic properties of the resulting Fe(IV) = NTs complexes in relation to their coordination sphere and compare them to other Fe(IV) nitrene active species. We show in particular the important role of the anionic character and strong π-donation of the phenolate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1a–c
Fig. 1
Scheme 2
Scheme 3a–d
Fig. 2a–c
Scheme 4
Fig. 3

Similar content being viewed by others

References

  1. Hili R, Yudin AK (2006) Making carbon-nitrogen bonds in biological and chemical synthesis. Nat Chem Biol 2:284–287. doi:10.1038/nchembio0606-284

    Article  CAS  Google Scholar 

  2. Roizen JL, Harvey ME, Bois JD (2012) Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc Chem Res 45:911–922. doi:10.1021/ar200318q

    Article  CAS  Google Scholar 

  3. Dequirez G, Pons V, Dauban P (2012) Nitrene chemistry in organic synthesis: still in its infancy? Angew Chem Int Ed 51:7384–7395

    Article  CAS  Google Scholar 

  4. Roughley SD, Jordan AM (2011) The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J Med Chem 54:3451–3479. doi:10.1021/jm200187y

    Article  CAS  Google Scholar 

  5. Chang JWW, Ton TMU, Chan PWH (2011) Transition-metal-catalyzed aminations and aziridinations of CH and CC bonds with iminoiodinanes. Chem Rec 11:331–357

    Article  CAS  Google Scholar 

  6. Fiori KW, DuBois J (2007) Catalytic intermolecular amination of C − H bonds: method development and mechanistic insights. J Am Chem Soc 129:562–568. doi:10.1021/ja0650450

    Article  CAS  Google Scholar 

  7. Au SM, Huang JS, Yu WY et al (1999) Aziridination of alkenes and amidation of alkanes by Bis(tosylimido)ruthenium(VI) porphyrins. A mechanistic study. J Am Chem Soc 121:9120–9132

    Article  CAS  Google Scholar 

  8. King ER, Hennessy ET, Betley TA (2011) Catalytic C − H bond amination from high-spin iron imido complexes. J Am Chem Soc 133:4917–4923. doi:10.1021/ja110066j

    Article  CAS  Google Scholar 

  9. Vardhaman AK, Barman P, Kumar S et al (2013) Comparison of the reactivity of nonheme iron(IV)–oxo versus iron(IV)–imido complexes: which is the better oxidant? Angew Chem Int Ed 52:12288–12292. doi:10.1002/anie.201305370

    Article  CAS  Google Scholar 

  10. Liu Y, Guan X, Wong EL-M et al (2013) Nonheme iron-mediated amination of C(sp3)–H bonds. Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations. J Am Chem Soc 135:7194–7204. doi:10.1021/ja3122526

    Article  CAS  Google Scholar 

  11. Chandrachud PP, Jenkins DM (2015) High valent FeIV chemistry in sustainable oxidation catalysis. Tetrahedron Lett 56:2369–2376

    Article  CAS  Google Scholar 

  12. Mahy J-P, Bedi G, Battioni P, Mansuy D (1988) Aziridination of alkenes catalysed by porphyrinirons: selection of catalysts for optimal efficiency and stereospecificity. J Chem Soc Perkin Trans 2:1517–1524. doi:10.1039/P29880001517

    Article  Google Scholar 

  13. Leeladee P, Jameson GNL, Siegler MA et al (2013) Generation of a high-valent iron imido corrolazine complex and NR group transfer reactivity. Inorg Chem 52:4668–4682. doi:10.1021/ic400280x

    Article  CAS  Google Scholar 

  14. Moreau Y, Chen H, Derat E et al (2007) NR transfer reactivity of azo-compound I of P450. How does the nitrogen substituent tune the reactivity of the species toward CH and CC activation? J Phys Chem B 111:10288–10299. doi:10.1021/jp0743065

    Article  CAS  Google Scholar 

  15. Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937. doi:10.1126/science.1193478

    Article  CAS  Google Scholar 

  16. Hohenberger J, Ray K, Meyer K (2012) The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat Commun 3:720. doi:10.1038/ncomms1718

    Article  Google Scholar 

  17. McDonald AR, Jr LQ (2013) High-valent nonheme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord Chem Rev 257:414–428. doi:10.1016/j.ccr.2012.08.002

    Article  CAS  Google Scholar 

  18. Farwell CC, Zhang RK, McIntosh JA et al (2015) Enantioselective enzyme-catalyzed aziridination enabled by active-site evolution of a cytochrome P450. ACS Cent Sci 1:89–93

    Article  CAS  Google Scholar 

  19. Klinker EJ, Jackson TA, Jensen MP et al (2006) A tosylimido analogue of a nonheme oxoiron(IV) complex. Angew Chem Int Ed 45:7394–7397. doi:10.1002/anie.200602799

    Article  CAS  Google Scholar 

  20. Cowley RE, Eckert NA, Vaddadi S et al (2011) Selectivity and mechanism of hydrogen atom transfer by an isolable imidoiron(III) complex. J Am Chem Soc 133:9796–9811

    Article  CAS  Google Scholar 

  21. Mehn MP, Peters JC (2006) Mid- to high-valent imido and nitrido complexes of iron. J Inorg Biochem 100:634–643. doi:10.1016/j.jinorgbio.2006.01.023

    Article  CAS  Google Scholar 

  22. Thomas CM, Mankad NP, Peters JC (2006) Characterization of the terminal iron(IV) imides [PhBPtBu2(pz‘)]FeIV⋮NAd+. J Am Chem Soc 128:4956–4957. doi:10.1021/ja0604358

    Article  CAS  Google Scholar 

  23. Nieto I, Ding F, Bontchev RP et al (2008) Thermodynamics of hydrogen atom transfer to a high-valent iron imido complex. J Am Chem Soc 130:2716–2717. doi:10.1021/ja0776834

    Article  CAS  Google Scholar 

  24. Gouré E, Avenier F, Dubourdeaux P et al (2014) A diiron(III, IV) imido species very active in nitrene-transfer reactions. Angew Chem Int Ed 53:1580–1584. doi:10.1002/anie.201307429

    Article  Google Scholar 

  25. 25. Avenier F, Latour J-M (2004) Catalytic aziridination of olefins and amidation of thioanisole by a non-heme iron complex. Chem Commun 1544–1545.

  26. Gouré E, Senthilnathan D, Coin G et al (2016) Tautomeric equilibrium within an imido amido diiron species and catalytic two-stage nitrene transfers. Submitted

  27. Velusamy M, Palaniandavar M, Gopalan RS, Kulkarni GU (2003) Novel iron(III) complexes of tripodal and linear tetradentate bis(phenolate) ligands: close relevance to intradiol-cleaving catechol dioxygenases. Inorg Chem 42:8283–8293. doi:10.1021/ic020569w

    Article  CAS  Google Scholar 

  28. Kurahashi T, Oda K, Sugimoto M et al (2006) Trigonal-bipyramidal geometry induced by an external water ligand in a sterically hindered iron salen complex, related to the active site of protocatechuate 3,4-dioxygenase. Inorg Chem 45:7709–7721. doi:10.1021/ic060650p

    Article  CAS  Google Scholar 

  29. Zhu K, Shaver MP, Thomas SP (2016) Amine-bis(phenolate) iron(III)-catalyzed formal hydroamination of olefins. Chem Asian J 11:977–980. doi:10.1002/asia.201501098

    Article  CAS  Google Scholar 

  30. Reckling AM, Martin D, Dawe LN et al (2011) Structure and C–C cross-coupling reactivity of iron(III) complexes of halogenated amine-bis(phenolate) ligands. J Organomet Chem 696:787–794. doi:10.1016/j.jorganchem.2010.09.076

    Article  CAS  Google Scholar 

  31. Poli R, Shaver MP (2014) Atom transfer radical polymerization (ATRP) and organometallic mediated radical polymerization (OMRP) of styrene mediated by diaminobis(phenolato)iron(II) complexes: a DFT study. Inorg Chem 53:7580–7590. doi:10.1021/ic5009347

    Article  CAS  Google Scholar 

  32. Hasan K, Fowler C, Kwong P et al (2008) Synthesis and structure of iron(III) diamine-bis(phenolate) complexes. Dalton Trans 2991–2998

  33. R. Patra et al (2016) To be published

  34. Kumar S, Faponle AS, Barman P et al (2014) Long-range electron transfer triggers mechanistic differences between iron(IV)-oxo and iron(IV)-imido oxidants. J Am Chem Soc 136:17102–17115. doi:10.1021/ja508403w

    Article  CAS  Google Scholar 

  35. Hennessy ET, Liu RY, Iovan DA et al (2014) Iron-mediated intermolecular N-group transfer chemistry with olefinic substrates. Chem Sci 5:1526–1532. doi:10.1039/C3SC52533C

    Article  CAS  Google Scholar 

  36. Wang L, Hu L, Zhang H et al (2015) Three-coordinate iron(IV) bisimido complexes with aminocarbene ligation: synthesis, structure, and reactivity. J Am Chem Soc 137:14196–14207. doi:10.1021/jacs.5b09579

    Article  CAS  Google Scholar 

  37. Vardhaman AK, Lee Y-M, Jung J et al (2016) Enhanced electron transfer reactivity of a nonheme iron(IV)–imido complex as compared to the iron(IV)-oxo analogue. Angew Chem Int Ed 55:3709–3713. doi:10.1002/anie.201600287

    Article  CAS  Google Scholar 

  38. te Velde G, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967. doi:10.1002/jcc.1056

    Article  Google Scholar 

  39. SCM, Vrije Universiteit ADF 2010. SCM, Amsterdam, The Netherlands

  40. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985. doi:10.1063/1.472933

    Article  CAS  Google Scholar 

  41. Handy NC, Cohen AJ (2001) Left-right correlation energy. Mol Phys 99:403–412. doi:10.1080/00268970010018431

    Article  CAS  Google Scholar 

  42. Hoe W-M, Cohen AJ, Handy NC (2001) Assessment of a new local exchange functional {OPTX}. Chem Phys Lett 341:319–328. doi:10.1016/S0009-2614(01)00581-4

    Article  CAS  Google Scholar 

  43. Swart M, Ehlers AW, Lammertsma K (2004) Performance of the OPBE exchange-correlation functional. Mol Phys 102:2467–2474. doi:10.1080/0026897042000275017

    Article  CAS  Google Scholar 

  44. Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theory Comput 4:2057–2066. doi:10.1021/ct800277a

    Article  CAS  Google Scholar 

  45. Conradie J, Ghosh A (2007) Electronic structure of trigonal-planar transition-metal − imido complexes: spin-state energetics, spin-density profiles, and the remarkable performance of the OLYP functional. J Chem Theory Comput 3:689–702

    Article  CAS  Google Scholar 

  46. Swart M (2007) Metal–ligand bonding in metallocenes: differentiation between spin state, electrostatic and covalent bonding. Inorg Chim Acta 360:179–189. doi:10.1016/j.ica.2006.07.073

    Article  CAS  Google Scholar 

  47. Noodleman L, Han W-G (2006) Structure, redox, pK a, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways. JBIC J Biol Inorg Chem 11:674–694. doi:10.1007/s00775-006-0136-3

    Article  CAS  Google Scholar 

  48. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. doi:10.1021/j100096a001

    Article  CAS  Google Scholar 

  49. Reiher M, Salomon O, Artur Hess B (2001) Reparameterization of hybrid functionals based on energy differences of states of different multiplicity. Theor Chem Accounts 107:48–55. doi:10.1007/s00214-001-0300-3

    Article  CAS  Google Scholar 

  50. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  51. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta\char21generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. doi:10.1103/PhysRevLett.91.146401

    Article  Google Scholar 

  52. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129–12137. doi:10.1063/1.1626543

    Article  CAS  Google Scholar 

  53. Jaccob M, Rajaraman G (2012) A computational examination on the structure, spin-state energetics and spectroscopic parameters of high-valent FeIV[double bond, length as m-dash]NTs species. Dalton Trans 41:10430–10439. doi:10.1039/C2DT31071F

    Article  CAS  Google Scholar 

  54. Laarhoven LJJ, Mulder P, Wayner DDM (1999) Determination of bond dissociation enthalpies in solution by photoacoustic calorimetry. Acc Chem Res 32:342–349. doi:10.1021/ar9703443

    Article  CAS  Google Scholar 

  55. Tian Z, Fattahi A, Lis L, Kass SR (2006) Cycloalkane and cycloalkene C − H bond dissociation energies. J Am Chem Soc 128:17087–17092. doi:10.1021/ja065348u

    Article  CAS  Google Scholar 

  56. Shaik S, Hirao H, Kumar D (2007) Reactivity of high-valent iron–oxo species in enzymes and synthetic reagents: a tale of many states. Acc Chem Res 40:532–542. doi:10.1021/ar600042c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Labex ARCANE (ANR-11-LABX-0003-01) for financial support. P.M. thanks GENCI-CINES for providing CPU resources through Grant 2015–089173. J.-M. Latour is acknowledged for fruitful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Maldivi.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 99.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, R., Maldivi, P. DFT analysis of the electronic structure of Fe(IV) species active in nitrene transfer catalysis: influence of the coordination sphere. J Mol Model 22, 278 (2016). https://doi.org/10.1007/s00894-016-3142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3142-6

Keywords

Navigation