Skip to main content
Log in

Insight into drug resistance mechanisms and discovery of potential inhibitors against wild-type and L1196M mutant ALK from FDA-approved drugs

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Anaplastic lymphoma kinase (ALK) plays a crucial role in multiple malignant cancers. It is known as a well-established target for the treatment of ALK-dependent cancers. Even though substantial efforts have been made to develop ALK inhibitors, only crizotinib, ceritinib, and alectinib had been approved by the U.S. Food and Drug Administration for patients with ALK-positive non-small cell lung cancer (NSCLC). The secondary mutations with drug-resistance bring up difficulties to develop effective drugs for ALK-positive cancers. To give a comprehensive understanding of molecular mechanism underlying inhibitor response to ALK tyrosine kinase mutations, we established an accurate assessment for the extensive profile of drug against ALK mutations by means of computational approaches. The molecular mechanics-generalized Born surface area (MM-GBSA) method based on molecular dynamics (MD) simulation was carried out to calculate relative binding free energies for receptor-drug systems. In addition, the structure-based virtual screening was utilized to screen effective inhibitors targeting wild-type ALK and the gatekeeper mutation L1196M from 3180 approved drugs. Finally, the mechanism of drug resistance was discussed, several novel potential wild-type and L1196M mutant ALK inhibitors were successfully identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT (1994) Fusion of a Kinase gene, ALK, to a nucleolar protein gene, NPM, in Non-Hodgkins-Lymphoma. Science 263(5151):1281–1284. doi:10.1126/science.8122112

    Article  CAS  Google Scholar 

  2. Anna Kruczynski GD, Laurent C, Brousset P, Lamant L (2012) Anaplastic lymphoma kinase as a therapeutic target. Expert Opin Ther Target 16(11):12. doi:10.1517/14728222.2012.719498

    Google Scholar 

  3. Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22(18):2812–2822. doi:10.1038/sj.onc.1206388

    Article  CAS  Google Scholar 

  4. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, S-i P, Ercan D, Sheehan CE, Ross JS, Cronin MT, Jaenne PA, Stephens PJ (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18(3):382–384. doi:10.1038/nm.2673

    Article  CAS  Google Scholar 

  5. Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, Pinkus GS, Xiao S, Yi ES, Fletcher CDM, Fletcher JA (2000) TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 157(2):377–384. doi:10.1016/s0002-9440(10)64550-6

    Article  CAS  Google Scholar 

  6. Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, Enomoto M, Hamada T, Haruta H, Watanabe H (2008) Identification of novel isoforms of the EML4-ALK transforming gene in non–small cell lung cancer. Cancer Res 68(13):4971–4976

    Article  CAS  Google Scholar 

  7. Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, Choi HG, Kim J, Chiang D, Thomas R (2008) EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 14(13):4275–4283

    Article  CAS  Google Scholar 

  8. Ren H, Tan Z-P, Zhu X, Crosby K, Haack H, Ren J-M, Beausoleil S, Moritz A, Innocenti G, Rush J, Zhang Y, Zhou X-M, Gu T-L, Yang Y-F, Comb MJ (2012) Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer. Cancer Res 72(13):3312–3323. doi:10.1158/0008-5472.can-11-3931

    Article  CAS  Google Scholar 

  9. Kazandjian D, Blumenthal GM, Chen H-Y, He K, Patel M, Justice R, Keegan P, Pazdur R (2014) FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist 19(10):E5–E11. doi:10.1634/theoncologist.2014-0241

    Article  Google Scholar 

  10. Shaw AT, Kim DW, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, Vansteenkiste J, Sharma S, De Pas T, Riely GJ, Solomon BJ, Wolf J, Thomas M, Schuler M, Liu G, Santoro A, Lau YY, Goldwasser M, Boral AL, Engelman JA (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370(13):1189–1197. doi:10.1056/NEJMoa1311107

    Article  CAS  Google Scholar 

  11. Gadgeel S, Ou S-H, Chiappori AA, Riely G, Lee R-M, Garcia L, Sato J, Yokoyama S, Tanaka T, Gandhi L (2013) A phase 1 dose escalation study of a new ALK inhibitor, CH5424802/RO5424802, in ALK+ non-small cell lung cancer (NSCLC) patients who have failed crizotinib (AF-002JG/NP28761, NCT01588028). J Thorac Oncol 8:S199–S199

    Google Scholar 

  12. Sullivan I, Planchard D (2016) ALK inhibitors in non-small cell lung cancer: the latest evidence and developments. Ther Adv Med Oncol 8(1):32–47. doi:10.1177/1758834015617355

    CAS  Google Scholar 

  13. Bang Y, Kwak EL, Shaw AT, Camidge DR, Iafrate AJ, Maki RG, Solomon BJ, Ou SI, Salgia R, Clark JW (2010) Clinical activity of the oral ALK inhibitor PF-02341066 in ALK-positive patients with non-small cell lung cancer (NSCLC). Journal of Clinical Oncology 28 (18)

  14. Rolfo C, Ruiz R, Giovannetti E, Gil-Bazo I, Russo A, Passiglia F, Giallombardo M, Peeters M, Raez L (2015) Entrectinib: a potent new TRK, ROS1, and ALK inhibitor. Expert Opin Investig Drugs 24(11):1493–1500. doi:10.1517/13543784.2015.1096344

    Article  CAS  Google Scholar 

  15. Huang D, Kim D-W, Kotsakis A, Deng S, Lira P, Ho SN, Lee NV, Vizcarra P, Cao JQ, Christensen JG, Kim TM, J-m S, Ahn JS, Ahn M-J, Park K, Mao M (2013) Multiplexed deep sequencing analysis of ALK kinase domain identifies resistance mutations in relapsed patients following crizotinib treatment. Genomics 102(3):157–162. doi:10.1016/j.ygeno.2013.02.006

    Article  CAS  Google Scholar 

  16. Gainor JF, Shaw AT (2013) Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol 31(31):3987–3996. doi:10.1200/jco.2012.45.2029

    Article  CAS  Google Scholar 

  17. Heuckmann JM, Hoelzel M, Sos ML, Heynck S, Balke-Want H, Koker M, Peifer M, Weiss J, Lovly CM, Gruetter C, Rauh D, Pao W, Thomas RK (2011) ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin Cancer Res 17(23):7394–7401. doi:10.1158/1078-0432.ccr-11-1648

    Article  CAS  Google Scholar 

  18. Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K, Capelletti M, Shimamura T, Ercan D, Stumpfova M, Xiao Y, Weremowicz S, Butaney M, Heon S, Wilner K, Christensen JG, Eck MJ, Wong K-K, Lindeman N, Gray NS, Rodig SJ, Jaenne PA (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71(18):6051–6060. doi:10.1158/0008-5472.can-11-1340

    Article  CAS  Google Scholar 

  19. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18(5):1472–1482. doi:10.1158/1078-0432.ccr-11-2906

    Article  CAS  Google Scholar 

  20. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82. doi:10.1021/ci100275a

    Article  CAS  Google Scholar 

  21. Deshpande N, Addess KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W, Zhang Q, Knezevich C, Xie L, Chen L, Feng Z (2005) The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res 33(suppl 1):D233–D237

    CAS  Google Scholar 

  22. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  23. Zhou P, Tian F, Shang Z (2009) 2D depiction of nonbonding interactions for protein complexes. J Comput Chem 30(6):940–951. doi:10.1002/jcc.21109

    Article  CAS  Google Scholar 

  24. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217–241

    Article  CAS  Google Scholar 

  25. Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. Rna-a Publ Rna Soc 15(6):1219–1230. doi:10.1261/rna.1563609

    Article  CAS  Google Scholar 

  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/jcc.21256

    Article  CAS  Google Scholar 

  27. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):D1100–D1107

    Article  CAS  Google Scholar 

  28. Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  CAS  Google Scholar 

  29. Adrià CM, Garcia-Vallvé S, Pujadas G (2012) DecoyFinder, a tool for finding decoy molecules. J Cheminf 4:1–1

    Article  Google Scholar 

  30. Li J, Wang H, Li J, Bao J, Wu C (2016) Discovery of a potential HER2 inhibitor from natural products for the treatment of HER2-positive breast cancer. Int J Mol Sci 17(7):1055

    Article  Google Scholar 

  31. Xu H-l, Wang Z-j, Liang X-m, Li X, Shi Z, Zhou N, Bao J-k (2014) In silico identification of novel kinase inhibitors targeting wild-type and T315I mutant ABL1 from FDA-approved drugs. Mol BioSyst 10(6):1524–1537

    Article  CAS  Google Scholar 

  32. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. doi:10.1093/bioinformatics/btt055

    Article  CAS  Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  34. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinf 65(3):712–725. doi:10.1002/prot.21123

    Article  CAS  Google Scholar 

  35. Case D, Darden T, Cheatham T III, Simmerling C, Wang J, Duke R, Luo R, Walker R, Zhang W, Merz K (2012) AMBER 12. University of California at San Francisco, San Francisco

  36. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

  37. Nagpal S, Tiwari S, Mapa K, Thukral L (2015) Decoding structural properties of a partially unfolded protein substrate: en route to chaperone binding. Plos Computational Biology 11(9). doi:10.1371/journal.pcbi.1004496

  38. Fujii S, Kono H, Takenaka S, Go N, Sarai A (2007) Sequence-dependent DNA deformability studied using molecular dynamics simulations. Nucleic Acids Res 35(18):6063–6074. doi:10.1093/nar/gkm627

    Article  CAS  Google Scholar 

  39. Wang J, Hou T, Xu X (2006) Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput-Aided Drug Design 2(3):287–306. doi:10.2174/157340906778226454

    Article  CAS  Google Scholar 

  40. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. doi:10.1063/1.470117

    Article  CAS  Google Scholar 

  41. Rastelli G, Rio AD, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA. J Comput Chem 31(4):797–810

    CAS  Google Scholar 

  42. Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson−Boltzmann surface area method. Mol Inf 31(2):114–122

    Article  CAS  Google Scholar 

  43. Yang T, Wu JC, Yan C, Wang Y, Luo R, Gonzales MB, Dalby KN, Ren P (2011) Virtual screening using molecular simulations. Proteins: Struct, Funct Bioinf 79(6):1940–1951

    Article  CAS  Google Scholar 

  44. Spiliotopoulos D, Spitaleri A, Musco G (2012) Exploring PHD fingers and H3K4me0 interactions with molecular dynamics simulations and binding free energy calculations: AIRE-PHD1, a comparative study. PLoS ONE 7(10), e46902

    Article  CAS  Google Scholar 

  45. Brown SP, Muchmore SW (2009) Large-scale application of high-throughput molecular mechanics with Poisson−Boltzmann surface area for routine physics-based scoring of protein−ligand complexes. J Med Chem 52(10):3159–3165

    Article  CAS  Google Scholar 

  46. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32(5):866–877

    Article  CAS  Google Scholar 

  47. Awad MM, Shaw AT (2014) ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol: H&O 12(7):429–439

    Google Scholar 

  48. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, Kimura H, Mitsudomi T, Tanio Y, Mano H, Grp ALKLCS (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 18:1734–1739. doi:10.1056/NEJMoa1007478

    Article  Google Scholar 

  49. Park H, Hong S, Kim J, Hong S (2013) Discovery of picomolar ABL kinase inhibitors equipotent for wild type and T315I mutant via structure-based de novo design. J Am Chem Soc 135(22):8227–8237. doi:10.1021/ja311756u

    Article  CAS  Google Scholar 

  50. Mitrasinovic PM (2014) Structural elucidation of unique inhibitory activities of two thiazolo 4,5-d pyrimidines against epidermal growth factor receptor (EGFR): implications for successful drug design. Med Chem 10(1):46–58

    Article  CAS  Google Scholar 

  51. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small‐molecule ligands to macromolecular receptors. Angew Chem Int Ed 41(15):2644–2676

    Article  CAS  Google Scholar 

  52. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery 10(5):449–461

    Article  CAS  Google Scholar 

  53. Lee CC, Jia Y, Li N, Sun X, Ng K, Ambing E, Gao M-Y, Hua S, Chen C, Kim S (2010) Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem J 430(3):425–437

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Lei Wu (Sichuan University) for providing constructive suggestions. This work was supported in part by National Natural Science Foundation of China (Nos. 31300674, 81173093, 30970643, 81373311 and J1103518) and the Special Program for Youth Science and the Technology Innovative Research Group of Sichuan Province, China (No 2011JTD0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinku Bao.

Additional information

Jianzong Li and Wei Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 63.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, W., Luo, H. et al. Insight into drug resistance mechanisms and discovery of potential inhibitors against wild-type and L1196M mutant ALK from FDA-approved drugs. J Mol Model 22, 231 (2016). https://doi.org/10.1007/s00894-016-3099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3099-5

Keywords

Navigation