Skip to main content
Log in

Computational insight into complex structures of thorium coordination with N, N’- bis(3-allyl salicylidene)-o-phenylenediamine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical calculations on the structure of Th(IV) complex containing N, N’- bis(3-allyl salicylidene)-o-phenylenediamine (BASPDA) were performed using density functional theory (DFT) at the B3LYP/6-311G** level. The geometrical structural parameters and infrared spectra results of the Th(BASPDA)2 from the calculation were compared with the parallel dislocated structure (PDS) obtained in laboratory. The calculated structural parameters were in good agreement with the experimental results. In addition, based on the calculations, a stereoisomer SFS (staggered finger “ + ” structure) of the Th(BASPDA)2 complex was forecasted by the analysis of a comprehensive method. The charge distribution, structural parameters, bond order indices, spectral properties and thermodynamic properties as well as the molecular orbitals of the two possible crystal structures of Th(BASPDA)2 were also systematically studied. It was expected that this work could provide insightful information for understanding the properties of Th (BASPDA)2 complex at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ji BJ, Zhang SC (2005) World Nucl Geosc 22:203–210

    Google Scholar 

  2. Zhang SC, Liu P, Zhang BJ (2005) World Nucl Geosc 22:98–103

    Google Scholar 

  3. Shtangeeva I, Ayrault S, Jain J (2005) J Environ Radioact 81:283–293

    Article  CAS  Google Scholar 

  4. Chen XA, Han XM, Cheng YE (2002) Chin J Radiol Heal 11(1):6–7

    Google Scholar 

  5. Lipshutz GS, Brennan TV, Warren RS (2002) J Am Coll Surg 195:713–718

    Article  Google Scholar 

  6. Prasada RT, Metilda P, Mary GJ (2006) Talant 68:1047–1064

    Article  Google Scholar 

  7. Aydin FA, Soylak M (2007) Talant 73:134–141

    Article  CAS  Google Scholar 

  8. Bayyari MA, Nazal MK, Khalili FI (2010) Arab Journ Chem 3:115–119

    Article  CAS  Google Scholar 

  9. Sharma JN, Ruhela R, Harindaran KN, Mishra SL, Tangri SK, Suri AK (2008) J Radioanal Nucl Chem 278:173–177

    Article  CAS  Google Scholar 

  10. Hosseini MS, Hosseini-Bandegharaei A (2010) J Radioanal Nucl Chem 283:23–30

    Article  CAS  Google Scholar 

  11. Grützmacher H (2012) Z Anorg Allg Chem 638:1877–1879

    Article  Google Scholar 

  12. Rastegarzadeh S, Pourreza N, Saeedi I (2010) J Hazard Mater 173:110–114

    Article  CAS  Google Scholar 

  13. Behrle AC, Barnes CL, Nikolas K, Walensky JR (2013) Inorg Chem 52:10623–10631

    Article  CAS  Google Scholar 

  14. Dulong F, Pouessel J, Thuery P, Berthet JC, Ephritikhine M, Cantat T (2013) Chem Com 49:2412–2414

    Article  CAS  Google Scholar 

  15. Kohn W, Sham LJ (1965) Phys Rev 140:1133–1138

    Article  Google Scholar 

  16. van Hoorn WP, van Veggel FC, Reinhoudt DN (1996) J Org Chem 61:7180–7184

    Article  Google Scholar 

  17. Thuéry P, Nierlich M (1997) J Inclus Phen 27:13–20(18)

    Article  Google Scholar 

  18. Molins MA, Nieto PM, Sanchez C, Prados P, Mendoza JD, Pons M (1992) J Org Chem 6924-6931

  19. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Zhang IY, Wu J, Xu X (2010) Chem Commun 46:3057–3070

    Article  CAS  Google Scholar 

  21. Regulska E, Kalinowska M, Wojtulewski S, Korczak A, Sienkiewicz-Gromiuk J, Rz02czyńska Z, 01wis00ocka R and Lewandowski W (2014) Spect Act Part A Molec Biomol Spectros 132:713–725

  22. Talebian E, Talebian M (2014) Opt Intern J Light Elect Optics 125:228–231

    Article  CAS  Google Scholar 

  23. Feng GR, Qi TY, Shi WJ, Guo YX, Zhang YJ, Guo J, Kang LX (2014) J Molec Model 20:2154–2154

    Article  Google Scholar 

  24. Wu L, Sun B, Li Y, Chang W (2003) Anal 128:944–949

    Article  CAS  Google Scholar 

  25. Wu L, Li Y (2004) J Molec Recog 17:567–574

    Article  CAS  Google Scholar 

  26. Dong W, Yan M, Zhang M, Liu Z, Li Y (2005) Analyt Chim Act 542:186–192

    Article  CAS  Google Scholar 

  27. Mojica ERE (2013) J Molec Model 19:3911–3923

    Article  CAS  Google Scholar 

  28. Salimraftar N, Noee S, Abdouss M, Riazi G, Khoshhesab ZM (2014) Polym Bull 71:19–30

    Article  CAS  Google Scholar 

  29. Nicholls IA, Andersson HS, Golker K, Henschel H, Karlsson BC, Olsson GD, Rosengren AM, Shoravi S, Suriyanarayanan S, Wiklander JG (2011) Anal Bioanal Chem 400(6):1771–86

    Article  CAS  Google Scholar 

  30. He FF, Wang HQ, Wang YY, Wang XF, Zhang HS, Li HL, Tang JH (2013) J Radioan Nucl Chem 295:167–177

    Article  CAS  Google Scholar 

  31. Karthikeyan N, Prince JJ, Ramalingam S, Periandy S (2015) Spectr Act A Mol Biom Spect 139:229–242

    Article  CAS  Google Scholar 

  32. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chem Acc 75:173–194

    Article  CAS  Google Scholar 

  33. Elkechai A, Mani Y, Boucekkine A, Ephritikhine M (2012) Inorg Chem 51:6943–6952

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B Cond Matt 37:785–789

    Article  CAS  Google Scholar 

  35. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941

    Article  CAS  Google Scholar 

  36. Luo J, Wang CZ, Lan JH, Wu QY, Zhao YL, Chai ZF, Nie CM, Shi WQ (2015) Dalt Trans 44:3227–3236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No: 11275090 to C. Nie), and Hunan Provincial Natural Science Foundation for Distinguished Young Scholars (2015JJ1012 to Y.-W. Lin), and Scientific Research Fund of Hunan Provincial Education Department, China (12A116 to C. Nie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changming Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, W., Gao, S., Lin, YW. et al. Computational insight into complex structures of thorium coordination with N, N’- bis(3-allyl salicylidene)-o-phenylenediamine. J Mol Model 22, 224 (2016). https://doi.org/10.1007/s00894-016-3089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3089-7

Keywords

Navigation