Skip to main content
Log in

Second hyperpolarizability of delta shaped disubstituted acetylene complexes of beryllium, magnesium, and calcium

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Present theoretical study involves the delta shape complexes of beryllium, magnesium, and calcium where the metal atom interacts perpendicularly with disubstituted acetylene. Most of the complexes are found to be fairly stable. The dependence of second-hyperpolarizability on the basis set with increasing polarization and diffuse functions has been examined which showed the importance of ‘f-type’ type polarization function for heavy metal (Mg, Ca) and ‘d-type’ polarization function for beryllium. Larger second hyperpolarizability has been predicted for complexes having significant ground state polarization and low lying excited states favoring strong electronic coupling. Transition energy plays the most significant role in modulating the second hyperpolarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley-Interscience, New York

  2. Mayers F, Marder SR, Perry JW (1998) Introduction to the nonlinear optical properties of organic materials. In: In Interrante LV, Hampden-Smith MJ (eds) Chemistry of advanced materials. Wiley-VCH, New York, pp 207–269

  3. Papdopoulos MG, Sadlej AJ, Leszczysnki J (2006) Non-Linear Optical Properties of Matter (Challenges and Advances in Computational Chemistry and Physics) Springer.

  4. Maroulis G (2006) Atoms, molecules and clusters in electric field. World Scientific, Singapore

  5. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. quantum chemical aspects. Chem Rev 94:195–242

  6. Nandi PK, Panja N, Ghanty TK (2008) Heterocycle-based isomeric chromophores with substantially varying nlo properties: a new structure − property correlation study. J Phys Chem A 112:4844–4852

  7. Nandi PK, Panja N, Ghanty TK, Kar T (2009) Theoretical study of the effect of structural modifications on the hyperpolarizabilities of indigo derivatives. J Phys Chem A 113:2623–2631

  8. Panja N, Ghanty TK, Nandi PK (2010) A sum-over-state scheme of analysis of hyperpolarizabilities and its application to spiroconjugated molecular system. Theor Chem Accounts 126:323–337

  9. Hatua K, Nandi PK (2013) Relationship between different order polarizability and ground state dipole moment. J Theor Comput Chem 12:1250099

    Article  Google Scholar 

  10. Li ZJ, Wang FF, Li ZR, Xu HL, Huang XR, Wu D, Chen W, Yu GT, Gu FL, Aoki Y (2009) Large static first and second hyperpolarizabilities dominated by excess electron transition for radical ion pair salts M2˙+TCNQ˙ (M = Li, Na, K). Phys Chem Chem Phys 11:402–408

    Article  CAS  Google Scholar 

  11. Zhong RL, Xu HL, Muhammad S, Zhang J, Su ZM (2012) The stability and nonlinear optical properties: encapsulation of an excess electron compound LiCN▪▪▪Li within boron nitride nanotubes. J Mater Chem 22:2196–2202

    Article  CAS  Google Scholar 

  12. Zhong RL, Xu HL, Li ZR, Su ZM (2015) Role of excess electrons in nonlinear optical response. J Phys Chem Lett 6:612–619

  13. Yu G, Huang X, Li S, Chen W (2015) Theoretical insights and design of intriguing nonlinear optical species involving the excess electron. Int J Quantum Chem 115:671–679

  14. Sun WM, Wu D, Li Y, Liu JY, He HM, Li ZR (2015) A theoretical study on novel alkaline earth-based excess electron compounds: unique alkalides with considerable nonlinear optical responses. Phys Chem Chem Phys 17:4524–4532

    Article  CAS  Google Scholar 

  15. Xu HL, Zhong RL, Sun SL, Su ZM (2011) Widening or lengthening? Enhancing the first hyperpolarizability of tubiform multilithium salts. J Phys Chem C 115:16340–16346

  16. Zhong RL, Sun SL, Xu HL, Qiu YQ, Su ZM (2014) Multilithiation effect on the first hyperpolarizability of carbon–boron–nitride heteronanotubes: activating segment versus connecting pattern. J Phys Chem C 118(26):14185–14191

  17. Zhong RL, Sun SL, Xu HL, Qiu YQ, Su ZM (2012) The excess electron in a boron nitride nanotube: pyramidal nbo charge distribution and remarkable first hyperpolarizability. Eur J Chem 18:11350–11355

  18. Gu J, Le YQ, Hu YY, Li WQ, Tian WQ (2014) Tuning the first hyperpolarizabilities of boron nitride nanotubes. ACS Photon 1:928–935

  19. Karamanis P, Pouchan C (2013) Second-Hyperpolarizability (γ) Enhancement in metal-decorated zigzag graphene flakes and ribbons: the size effect. J Phys Chem C 117:3134–3140

  20. Liu ZB, Zhou ZJ, Li Y, Li ZR et al (2010) Push–pull electron effects of the complexant in a Li atom doped molecule with electride character: a new strategy to enhance the first hyperpolarizability. Phys Chem Chem Phys 12:10562–10568

    Article  CAS  Google Scholar 

  21. Song H, Zhang M, Yu H, Wang C, Zou H, Ma N, Qiu Y (2014) The Li-substituted effect on the geometries and second- order nonlinear optical properties of indeno[1,2-b]fluorene. Comp Theor Chem 1031:7–12

    Article  CAS  Google Scholar 

  22. Wang YF, Huang J, Zhou G (2013) Struct Chem 24(5):1545–1553

    Article  CAS  Google Scholar 

  23. Wang YF, Huang J, Li J, Zhou G (2014) Theoretical investigation of the structures, stabilities, and NLO responses of calcium-doped pyridazine: alkaline-earth-based alkaline salt electrides. J Mol Graph Model 47:77–82

    Article  Google Scholar 

  24. Gao Y, Wu HQ, Sun SL, Xu HL, Su ZM (2015) One lithium atom binding with P-nitroaniline: lithium salts or lithium electrides? J Mol Model 21:23

    Article  Google Scholar 

  25. Wang YF, Li B, Huang J, Li J, Li ZR (2015) Effect of alkaline earth metal atom on the large static first hyperpolarizabilities of alkaline earth-based alkaloides Be(NH3)nM (M = Be and Ca) in comparison with alkaloides Li(NH3)nNa (n =1-3). Comp Theor Chem 1051:10–16

    Article  CAS  Google Scholar 

  26. Hatua K, Nandi PK (2012) Theoretical study of electronic structure and third-order optical properties of beryllium-hydrocarbon complexes. Comp Theor Chem 996:82–90

    Article  CAS  Google Scholar 

  27. Hatua K, Nandi PK (2013) Interaction of beryllium with acceptor hydrocarbons: electronic structure and second hyperpolarizability. J Theor Comp Chem 12:1350046

  28. Hatua K, Nandi PK (2014) Double coned inverse sandwich complexes [M-(η4-C4H4)-M′] of Gr-IA and Gr-IIA metals: theoretical study of electronic of structure and second hyperpolarizability. J Mol Model 20:2440

    Article  Google Scholar 

  29. Hatua K, Nandi PK (2013) Beryllium-cyclobutadiene multidecker inverse sandwiches: electronic structure and second-hyperpolarizability. J Phys Chem A 117:12581–12589

    Article  CAS  Google Scholar 

  30. Hatua K, Nandi PK (2015) Second hyperpolarizability of multimetallocenes [Cp–Mn–Cp] of Be, Mg and Ca. J Theor Comp Chem 14(1):1550002

    Article  CAS  Google Scholar 

  31. Hatua K, Nandi PK (2014) Static second hyperpolarizability of Λ shaped alkaline earth metal complexes. J Theor Comp Chem 13(5):1450039

    Article  Google Scholar 

  32. Balaji V, Jordon KD (1988) Interactions of Be and Mg Atoms with C2H2 and C2H4. J Phys Chem 92:3101–3105

    Article  CAS  Google Scholar 

  33. Flores JR, Largo A (1991) Theoretical study of the interactions of Be and Mg atoms with acetylene. J Phys Chem 95:9278–9288

    Article  CAS  Google Scholar 

  34. Moore DT, Miller RE (2004) Structure of the acetylene–magnesium binary complex from infrared laser spectroscopy in helium nanodroplets. J Phys Chem A 108(45):9908–9915

    Article  CAS  Google Scholar 

  35. Alikhani ME, Hannachi Y, Manceron L, Bouteiller Y (1995) A density functional study of MC2H4 complexes (M = Li, Na, K): singularity of the Li atom. Chem Phys 103:10128–10136

    CAS  Google Scholar 

  36. Naumkin FY (2010) Complexes of Be and Mg with unsaturated hydrocarbon molecules: inter- and intramolecular cooperativity of binding. Chem Phys Lett 499:203–208

    Article  CAS  Google Scholar 

  37. Naumkin FY, Fisher K (2013) Small metal-organic molecular sandwiches: versatile unit for induced structure manipulation. Chem Phys Lett 590:52–57

    Article  CAS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1997) Errata: generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  40. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  41. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Erratum: atoms, molecules, solids, and surfaces — applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 48:4978

    Article  CAS  Google Scholar 

  42. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  45. Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimmers. J Phys Chem A 110(15):5121–51229

    Article  CAS  Google Scholar 

  46. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  47. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  48. Chai JD, Gordon MH (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  49. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108

    Article  Google Scholar 

  50. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  51. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford

  53. Feller D (1996) The role of databases in support of computational chemistry calculations. J Comp Chem 17(13):1571–1586

    Article  CAS  Google Scholar 

  54. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47(3):1045–1052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

(PKN) acknowledges the grant from UGC, Government of India under the Major Research Project (F. No. 42-339/2013 (SR) for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Nandi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatua, K., Nandi, P.K. Second hyperpolarizability of delta shaped disubstituted acetylene complexes of beryllium, magnesium, and calcium. J Mol Model 21, 254 (2015). https://doi.org/10.1007/s00894-015-2804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2804-0

Keywords

Navigation