Skip to main content
Log in

DFT studies on the palladium-catalyzed dearomatization reaction between naphthalene allyl chloride and allyltributylstannane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Pd-catalyzed dearomatization of naphthalene allyl chloride with allyltributylstannane has been investigated using density functional theory (DFT) calculations at the B3LYP level. The calculations indicate that the (ŋ 1-allyl)(ŋ 3-allyl)Pd(PH3) complex is responsible for the formation of ortho-dearomatized product. Moreover it is easy to produce the ortho-dearomatized product when reductive elimination starts from (ŋ 3-allylnaphthalene)(ŋ 1-allyl)Pd complex 7, while it is easy to form the para-dearomatized product when reductive elimination starts from (ŋ 3-allylnaphthalene)(ŋ 1-allyl)Pd complex 9. The Stille coupling products can’t be produced due to high reaction energy barrier.

Two mechanisms of dearomatization are investigated by DFT, and (ŋ 1-allyl)(ŋ 3-allyl)Pd(PH3) complexes are the main intermediates for ortho-dearomatized product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Scheme 5
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao M, Nakamura H, Yamamoto Y (2001) J Am Chem Soc 123:759–760

    Article  CAS  Google Scholar 

  2. García-Fortanet J, Kessler F, Buchwald SL (2009) J Am Chem Soc 131:6676–6677

    Article  Google Scholar 

  3. Lee S, Chataigner I, Piettre SR (2011) Angew Chem Int Ed 50:472–476

    Article  CAS  Google Scholar 

  4. Peng B, Feng X, Zhang X, Zhang S, Bao M (2010) J Org Chem 75:2619–2627

    Article  CAS  Google Scholar 

  5. Pouységu L, Deffieux D, Quideau S (2010) Tetrahedron 66:2235–2261

    Article  Google Scholar 

  6. Rousseaux S, García-Fortanet J, Del Aguila Sanchez MA, Buchwald SL (2011) J Am Chem Soc 133:9282–9285

    Article  CAS  Google Scholar 

  7. Rudolph A, Bos PH, Meetsma A, Minnaard AJ, Feringa BL (2011) Angew Chem Int Ed 50:5834–5838

    Article  CAS  Google Scholar 

  8. Delafuente DA, Myers WH, Sabat M, Harman WD (2005) Organometallics 24:1876–1885

    Article  CAS  Google Scholar 

  9. Clayden J, Kenworthy MN, Helliwell M (2003) Org Lett 5:831–834

    Article  CAS  Google Scholar 

  10. Zhou L, Wu LZ, Zhang LP, Tung CH (2006) Organometallics 25:1707–1711

    Article  CAS  Google Scholar 

  11. Kohmoto S, Masu H, Tatsuno C, Kishikawa K, Yamamoto M, Yamaguchi K (2000) J Chem Soc Perkin Trans 1:4464–4468

    Article  Google Scholar 

  12. Boivin J, Yousfi M, Zard SZ (1997) Tetrahedron Lett 38:5985–5988

    Article  CAS  Google Scholar 

  13. Pape AR, Kaliappan KP, Kündig EP (2000) Chem Rev 100:2917–2940

    Article  CAS  Google Scholar 

  14. Lu S, Xu Z, Bao M, Yamamoto Y (2008) Angew Chem Int Ed 47:4366–4369

    Article  CAS  Google Scholar 

  15. Ariafard A, Lin Z (2006) J Am Chem Soc 128:13010–13016

    Article  CAS  Google Scholar 

  16. Ren Y, Jia J, Zhang T, Wu H, Liu W (2012) Organometallics 31:1168–1179

    Article  CAS  Google Scholar 

  17. Ren Y, Jia J, Liu W, Wu H (2013) Organometallics 32:52–62

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004) Gaussian Inc, Wallingford

  19. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  22. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  23. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  24. Davidson ER, Feller D (1986) Chem Rev 86:61–696

    Article  Google Scholar 

  25. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  26. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  27. Fukui K (1970) J Chem Phys 74:4161–4163

    Article  CAS  Google Scholar 

  28. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  30. Milstein D, Stille JK (1979) J Am Chem Soc 101:4992–4998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (21001019) the Fundamental Research Funds for the Central Universities (DUT15LK24). The results were obtained on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxu Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Tian, D. & Han, D. DFT studies on the palladium-catalyzed dearomatization reaction between naphthalene allyl chloride and allyltributylstannane. J Mol Model 21, 260 (2015). https://doi.org/10.1007/s00894-015-2802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2802-2

Keywords

Navigation