Skip to main content
Log in

A density functional theory study of CO oxidation on CuO1-x(111)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The surface structures, CO adsorption, and oxidation-reaction properties of CuO1-x(111) with different reduction degree have been investigated by using density functional theory including on-site Coulomb corrections (DFT + U). Results indicate that the reduction of Cu has a great influence on the adsorption of CO. Electron localization caused by the reduction turns Cu2+ to Cu+, which interacts much stronger with CO, and the adsorption strength of CO is related to the electronic interaction with the substrate as well as the structural relaxation. In particular, the electronic interaction is proved to be the decisive factor. The surfaces of CuO1-x(111) with different reduction degree all have good adsorption to CO. With the expansion of the surface reduction degree, the amount of CO that is stably adsorbed on the surface increases, while the number of surface active lattice O decreases. In general, the activity of CO oxidation first rises and then declines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Royer S, Duprez D (2011) Chem Cat Chem 3:24–65

    CAS  Google Scholar 

  2. Huang TJ, Tsai DH (2003) Catal Lett 87:73–178

    Article  Google Scholar 

  3. Chon H, Prater CD (1966) Faraday Soc 41:380–393

    Article  Google Scholar 

  4. Moretti E, Lenarda M, Storaro L, Talon A, Frattini R, Polizzi S, Rodríguez-Castellón E, Jiménez-López A (2007) Appl Catal B Environ 72:149–156

    Article  CAS  Google Scholar 

  5. Hasegawa Y, Fukumoto K, Ishima T, Yamamoto H, Sano M, Miyake T (2009) Appl Catal B Environ 89:420–424

    Article  CAS  Google Scholar 

  6. Ayastuy JL, Gurbani A, González-Marcos MP, Gutiérrez-Ortiz MA (2010) Appl Catal A Gen 387:119–128

    Article  CAS  Google Scholar 

  7. Fan XL, Liu Y, Du XJ, Liu C, Zhang C (2013) Acta Phys -Chim Sin 29:263–270

    CAS  Google Scholar 

  8. Luo MF, Song YP, Lu JQ, Wang XY, Pu ZY (2007) J Phys Chem C 111:12686–12692

    Article  CAS  Google Scholar 

  9. Skårman B, Grandjean D, Benfield RE, Hinz A, Andersson A, Wallenberg LR (2002) J Catal 211:119–133

    Google Scholar 

  10. Rao KN, Bharali P, Thrimurthulu G, Reddy BM (2010) Catal Commun 11:863–866

    Article  CAS  Google Scholar 

  11. Martínez-Arias A, Fernández-García M, Gálvez O, Coronado JM, Anderson JA, Conesa JC, Soria J, Munuera G (2000) J Catal 195:207–216

    Article  Google Scholar 

  12. Hornés A, Hungría AB, Bera P, Cámara AL, Fernández-García M, Martínez- Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA (2010) J Am Chem Soc 132:34–35

    Article  Google Scholar 

  13. Jia AP, Jiang SY, Lu JQ, Luo MF (2010) J Phys Chem C 114:21605–21610

    Article  CAS  Google Scholar 

  14. Jia AP, Hu GS, Meng L, Xie YL, Lu JQ, Luo MF (2012) J Catal 289:199–209

    Article  CAS  Google Scholar 

  15. Lee HC, Kim DH (2008) Catal Today 132:109–116

    Article  CAS  Google Scholar 

  16. Avgouropoulos G, Ioannides T, Matralis H (2005) Appl Catal B Environ 56:87–93

    Article  CAS  Google Scholar 

  17. Wan H, Wang Z, Zhu J, Li X, Liu B, Gao F, Dong L, Chen Y (2008) Appl Catal B Environ 79:254–261

    Article  CAS  Google Scholar 

  18. Ye LP, Zhan JR, Zhang R, Sun YJ, Li JL, Wu XY, Luo Y (2012) Fine Chemicals 29:1066–1071

    CAS  Google Scholar 

  19. Hu J, Li DD, Lu JG, Wu RQ (2010) J Phys Chem C 114:17120–17126

    Article  CAS  Google Scholar 

  20. Polster CS, Nair H, Bacrtsch CD (2009) J Catal 266:308–319

    Article  CAS  Google Scholar 

  21. Wang HF, Kavanagh R, Guo YL, Guo Y, Lu GZ, Hu P (2012) J Catal 296:110–119

    Article  CAS  Google Scholar 

  22. Maimaiti Y, Nolan M, Elliott SD (2014) Phys Chem Chem Phys 16:3036–3046

    Article  CAS  Google Scholar 

  23. Bao HZ, Zhang WH, Hua Q, Jiang ZQ, Yang JL, Huang WX (2011) Angew Chem Int Ed 50:12294–12298

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  26. Kresse G, Joubert D (1999) Phys Rev B 56:1758–1775

    Article  Google Scholar 

  27. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  29. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  30. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys Condens Matter 9:767–808

    Article  CAS  Google Scholar 

  31. Nolan M, Elliott SD (2006) Phys Chem Chem Phys 8:5350–5358

    Article  CAS  Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  33. Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. World Scientific, Singapore

    Book  Google Scholar 

  34. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  35. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  36. Sheppard D, Terrell R, Henkelman G (2008) J Chem Phys 128:134106

    Article  Google Scholar 

  37. Sheppard D, Henkelman G (2011) J Comput Chem 32:1769–1771

    Article  CAS  Google Scholar 

  38. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) J Chem Phys 136:074103

    Article  Google Scholar 

  39. Åsbrink S, Norrby LJ (1970) Acta Crystallogr Sect B: Struct Sci 26:8–15

    Article  Google Scholar 

  40. Yang BX, Thurston TR, Tranquada JM, Shirane G (1989) Phys Rev B: Condens Matter Mater Phys 39:4343–4349

    Article  CAS  Google Scholar 

  41. Wang HF, Gong XQ, Guo YL, Guo Y, Lu GZ, Hu P (2009) J Phys Chem C 113:10229–10232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Plan of Shanghai City Outstanding Technical Leaders (12XD1421700), Innovation Program of Shanghai Municipal Education Commission (12YZ161), Natural Science Foundation of Shanghai (15ZR1421500), and Science and Technology Innovation project of Shanghai Putuo District (2014Q001A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, BX., Ye, LP., Gu, HJ. et al. A density functional theory study of CO oxidation on CuO1-x(111). J Mol Model 21, 195 (2015). https://doi.org/10.1007/s00894-015-2726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2726-x

Keywords

Navigation