Skip to main content
Log in

Energetic stability, atomic and electronic structures of extended γ-graphyne: A density functional study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The energetic stability, atomic and electronic structures of γ-graphyne and its derivatives (γ-GYs) with extended carbon chains were investigated as a function of chain length by density functional calculations in this work. The studied γ-GYs consist of hexagon carbon rings connected by linear chains with C atoms n = 0–22. We predict that the even-numbered C chains of γ-GYs consist of alternating single and triple C-C bonds (polyyne), energetically more stable than the odd-numbered C chains made of continuous C-C double bonds (polycumulene). The calculated electronic structures indicate that γ-GYs can be either metallic (odd n) or semiconductive (even n) depending on the parity of the number of C chain atoms. The semiconducting γ-GYs are predicted to have ~1.2 eV direct band gaps and 0.1–0.2 effective electron masses independent of the chain length. Thus introducing sp carbon atoms into sp 2-based graphene provides a novel way to open up band gaps without doping and defects while maintaining small electron masses critical to good transport properties.

The typical atomic model of graphyne (middle) as well as their band gaps (left) and electron density (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  4. Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. New J Phys 11:083019

    Article  Google Scholar 

  5. Jin CH, Lan HP, Peng LM, Suenaga K, Iijima S (2009) Deriving carbon atomic chains from graphene. Phys Rev Lett 102:205501

    Article  Google Scholar 

  6. Fan XF, Liu L, Lin JY, Shen ZX, Kuo JL (2009) Density functional theory study of finite carbon chains. ACS Nano 3:3788–3794

    Article  CAS  Google Scholar 

  7. Liu MJ, Artyukhov VI, Lee H, Xu FB, Yakobson BI (2013) Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7:10075–10082

    Article  CAS  Google Scholar 

  8. Liu Y, Jones RO, Zhao XL, Ando Y (2003) Carbon species confined inside carbon nanotubes: a density functional study. Phys Rev B 68:125413

    Article  Google Scholar 

  9. Zhao XL, Ando Y, Liu Y, Jinno M, Suzuki T (2003) Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys Rev Lett 90:187401

    Article  Google Scholar 

  10. Baughman RH, Eckhardt H, Kertesz M (1987) Structure–property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699

    Article  CAS  Google Scholar 

  11. Haley MM, Brand SC, Pak JJ (1997) Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem Int Ed 36:836–838

    Article  CAS  Google Scholar 

  12. Bunz UHF, Rubin Y, Tobe Y (1999) Polyethynylated cyclic pi-systems: scaffoldings for novel two and three-dimensional carbon networks. Chem Soc Rev 28:107–119

    Article  CAS  Google Scholar 

  13. Diederich F, Kivala M (2010) All-carbon scaffolds by rational design. Adv Mater 22:803–812

    Article  CAS  Google Scholar 

  14. Kehoe JM, Kiley JH, English JJ, Johnson CA, Petersen RC, Haley MM (2000) Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org Lett 2:969–972

    Article  CAS  Google Scholar 

  15. Marsden JA, Palmer GJ, Haley MM (2003) Synthetic strategies for dehydrobenzo n annulenes. Eur J Org Chem 2003:2355–2369

    Article  Google Scholar 

  16. Wan WB, Haley MM (2001) Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of “star” and “trefoil” graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. J Org Chem 66:3893–3901

    Article  CAS  Google Scholar 

  17. Yoshimura T, Inaba A, Sonoda M, Tahara K, Tobe Y, Williams RV (2006) Synthesis and properties of trefoil-shaped tris(hexadehydrotribenzo 12 annulene) and tris(tetradehydrotribenzo 12 annulene). Org Lett 8:2933–2936

    Article  CAS  Google Scholar 

  18. Kang J, Li JB, Wu FM, Li SS, Xia JB (2011) Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J Phys Chem C 115:20466–20470

    Article  CAS  Google Scholar 

  19. Narita N, Nagai S, Suzuki S, Nakao K (1998) Optimized geometries and electronic structures of graphyne and its family. Phys Rev B 58:11009–11014

    Article  CAS  Google Scholar 

  20. Zhou J, Lv K, Wang Q, Chen XS, Sun Q, Jena P (2011) Electronic structures and bonding of graphyne sheet and its BN analog. J Chem Phys 134:174701

    Article  Google Scholar 

  21. Li GX, Li YL, Liu HB, Guo YB, Li YJ, Zhu DB (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258

    Article  CAS  Google Scholar 

  22. Li GX, Li YL, Qian XM, Liu HB, Lin HW, Chen N, Li YJ (2011) Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J Phys Chem C 115:2611–2615

    Article  CAS  Google Scholar 

  23. Qian XM, Ning ZY, Li YL, Liu HB, Ouyang CB, Chen Q, Li YJ (2012) Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans 41:730–733

    Article  CAS  Google Scholar 

  24. Du HL, Deng ZB, Lu ZY, Yin YH, Yu LL, Wu H, Chen Z, Zou Y, Wang YS, Liu HB, Li YL (2011) The effect of graphdiyne doping on the performance of polymer solar cells. Synth Met 161:2055–2057

    Article  CAS  Google Scholar 

  25. Wang S, Yi LX, Halpert JE, Lai XY, Liu YY, Cao HB, Yu RB, Wang D, Li YL (2012) A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small 8:265–271

    Article  CAS  Google Scholar 

  26. Long MQ, Tang L, Wang D, Li YL, Shuai ZG (2011) Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano 5:2593–2600

    Article  CAS  Google Scholar 

  27. Peng Q, Ji W, De S (2012) Mechanical properties of graphyne monolayers: a first-principles study. Phys Chem Chem Phys 14:13385–13391

    Article  CAS  Google Scholar 

  28. Zhang YY, Pei QX, Wang CM (2012) Mechanical properties of graphynes under tension: a molecular dynamics study. Appl Phys Lett 101:081909

    Article  Google Scholar 

  29. He JJ, Ma SY, Zhou P, Zhang CX, He CY, Sun LZ (2012) Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT plus U calculations. J Phys Chem C 116:26313–26321

    Article  CAS  Google Scholar 

  30. Yue Q, Chang SL, Kang J, Tan JC, Qin SQ, Li JB (2012) Magnetic and electronic properties of alpha-graphyne nanoribbons. J Chem Phys 136:244702

    Article  Google Scholar 

  31. Malko D, Neiss C, Vines F, Gorling A (2012) Competition for graphene: graphynes with direction-dependent Dirac cones. Phys Rev Lett 108:086804

    Article  Google Scholar 

  32. Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116:5951–5956

    Article  CAS  Google Scholar 

  33. Zhang HY, Zhao MW, He XJ, Wang ZH, Zhang XJ, Liu XD (2011) High mobility and high storage capacity of lithium in sp-sp(2) hybridized carbon network: the case of graphyne. J Phys Chem C 115:8845–8850

    Article  CAS  Google Scholar 

  34. Jiao Y, Du AJ, Hankel M, Zhu ZH, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47:11843–11845

    Article  CAS  Google Scholar 

  35. Cranford SW, Buehler MJ (2012) Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 4:4587–4593

    Article  CAS  Google Scholar 

  36. Zhao WH, Yuan LF, Yang JL (2012) Graphdiyne as hydrogen purification membrane. Chin J Chem Phys 25:434–440

    Article  CAS  Google Scholar 

  37. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Krist 220:567–570

    Article  CAS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  39. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B (Solid State) 13:5188–5192

    Article  Google Scholar 

  40. Chengteh L, Weitao Y, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B (Condensed Matter) 37:785–789

    Article  Google Scholar 

  41. Clark CD, Dean PJ, Harris PV (1964) Intrinsic edge absorption in diamond. Proc R Soc London 277:312–329

    Article  CAS  Google Scholar 

  42. Kim BG, Choi HJ (2012) Graphyne: hexagonal network of carbon with versatile Dirac cones. Phys Rev B 86:115435

    Article  Google Scholar 

  43. Lee SH, Chung HJ, Heo J, Yang H, Shin J, Chung UI, Seo S (2011) Band gap opening by Two-dimensional manifestation of peierls instability in graphene. ACS Nano 5:2964–2969

    Article  CAS  Google Scholar 

  44. Peierls R E (1955) Quantum theory of solids. Clarendon, Oxford

  45. Collins AT, Williams AWS (1971) The nature of the acceptor centre in semiconducting diamond. J Phys C (Solid State Phys) 4:1789–1800

    Article  CAS  Google Scholar 

  46. Pei Y (2012) Mechanical properties of graphdiyne sheet. Phys B 407:4436–4439

    Article  CAS  Google Scholar 

  47. Deacon RS, Chuang KC, Nicholas RJ, Novoselov KS, Geim AK (2007) Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Phys Rev B. 76 081416

  48. Jiang Z, Henriksen EA, Tung LC, Wang YJ, Schwartz ME, Han MY, Kim P, Stormer HL (2007) Infrared spectroscopy of Landau levels of graphene. Phys Rev Lett 98:197403

    Article  CAS  Google Scholar 

  49. Yelgel C, Srivastava GP (2012) Ab initio studies of electronic and optical properties of graphene and graphene-BN interface. Appl Surf Sci 258:8338–8342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial supports from “Shanghai Pujiang Talent” program (12PJ1406500), “Shanghai High-tech Area of Innovative Science and Technology (14521100602)”, STCSM; “Key Program of Innovative Scientific Research” (14ZZ130) and “Key Laboratory of Advanced Metal-based Electrical Power Materials”, the Education Commission of Shanghai Municipality. X. L. thanks the Fundamental Research Funds for the Central University of China (Grant Nos. N110105001 and N120505001). X. Z. thanks National Natural Science Foundation of China (Grant Nos. 51202137, 61240054, and 11274222). Computations were done using Hujiang HPC facilities at USST, Shanghai Supercomputer Center, and National Supercomputing Center in Shenzhen, PR China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu or Xiaowu Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, B., Liu, Y., Li, X. et al. Energetic stability, atomic and electronic structures of extended γ-graphyne: A density functional study. J Mol Model 21, 154 (2015). https://doi.org/10.1007/s00894-015-2700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2700-7

Keywords

Navigation