Skip to main content

Advertisement

Log in

Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740–11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å2 surface area. Adsorption energies have been calculated for different Li atoms (1–14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol−1 adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol−1 energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1–10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol−1, respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  3. Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746–750

    Article  CAS  Google Scholar 

  4. Sun C, Jia Y, Yang XH, Yang HG, Yao X, Lu GQ, Selloni A, Smith SC (2011) J Phys Chem C 115:25590–25594

    Article  CAS  Google Scholar 

  5. Zheng Z, Huang B, Lu J, Wang Z, Qin X, Zhang X, Dai Y, Whangbo MH (2012) Chem Commun 48:5733–5735

    Article  CAS  Google Scholar 

  6. Tarnawski Z, Kim-Ngan NH, Zakrzewska K, Drogowska K, Brudnik A, Balogh AG, Kuzel R, Havela L, Sechovsky V (2013) Adv Nat Sci Nanosci Nanotechnol 4:025004

    Article  Google Scholar 

  7. Mao SS, Shen S, Guo L (2012) Prog Nat Sci Mater Int 22:522–534

    Article  Google Scholar 

  8. Hu X, Skadtchenko BO, Trudeau M, Antonelli DM (2006) J Am Chem Soc 128:11740–11741

    Article  CAS  Google Scholar 

  9. Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) J Phys Chem B 109:19422–19427

    Article  CAS  Google Scholar 

  10. Lim SH, Luo J, Zhong Z, Ji W, Lin J (2005) Inorg Chem 44:4124–4126

    Article  CAS  Google Scholar 

  11. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Nano Lett 11:3026–3033

    Article  CAS  Google Scholar 

  12. Raghunath P, Huang WF, Lin MC (2013) J Chem Phys 138:154705

    Article  CAS  Google Scholar 

  13. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  14. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  15. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  17. Huang WF, Raghunath P, Lin MC (2011) J Comput Chem 32:1065–1081

    Article  CAS  Google Scholar 

  18. Raghunath P, Lin MC (2008) J Phys Chem C 112:8276–8287

    Article  CAS  Google Scholar 

  19. Monkhorst HJ, Pack JD (1967) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  20. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  21. Hüfner S (1994) Adv Phys 43:183–356

    Article  Google Scholar 

  22. Finazzi E, Valentin CD, Pacchioni G, Selloni A (2008) J Chem Phys 129:154113

    Article  Google Scholar 

  23. Wagemaker M, Krol RVD, Kentgens APM, van Well AA, Mulder FM (2001) J Am Chem Soc 123:11454–11461

    Article  CAS  Google Scholar 

  24. Lunell S, Stashans A, Ojamae L, Lindstrom H, Hagfeldt A (1997) J Am Chem Soc 119:7374–7380

    Article  CAS  Google Scholar 

  25. Lin F, Zhou G, Li Z, Li J, Wu J, Duan W (2009) Chem Phys Lett 475:82–85

    Article  CAS  Google Scholar 

  26. Thompson TL, Yates JT (2006) Chem Rev 106:4428–4453

    Article  CAS  Google Scholar 

  27. Birowska M, Milowska K, Majewski JA (2011) Acta Phys Pol A 120:845–848

    CAS  Google Scholar 

  28. Dobson JF, Gould T (2012) J Phys Condens Matter 24:073201

    Article  Google Scholar 

  29. Chen DL, Al-Saidi WA, Johnson JK (2012) J Phys Condens Matter 24:424211

    Article  Google Scholar 

  30. Forrer D, Vittadini A (2011) Chem Phys Lett 516:72–75

    Article  CAS  Google Scholar 

  31. Moellmann J, Ehrlich S, Tonner R, Grimme S (2012) J Phys Condens Matter 24:424206

    Article  Google Scholar 

  32. Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  33. Serpone N (2006) J Phys Chem B 110:24287–24293

    Article  CAS  Google Scholar 

  34. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  35. Gratzel MJ (2003) Photochem Photobiol C 4:145–153

    Article  CAS  Google Scholar 

  36. Mokrushin V, Bedanov V, Tsang W, Zachariah M, Knyazev V (2002) ChemRate Version 1.19. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Council (NSC) of Taiwan. We acknowledge the National Center for High-performance Computing for providing the computer time. M.C.L. thanks the National Science Council of Taiwan for the distinguished visiting professorship at NCTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

The PES of Li migration from surface to subsurface is shown in Fig. S1. PES of 2Li migration and its geometries are shown in Figs. S2-S3. Adsorption energies of 1H2 on (1–10)Li-TiO2(a) and (1–5)H2 on (1,5,9)Li-TiO2(a) are shown in Tables S1-13. Their related geometries are shown in Figs. S4-S7. H2 adsorption on Li-TiO2(001) surface is shown in Fig. S8. (DOCX 20704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasadesikan, V., Raghunath, P. & Lin, M.C. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen. J Mol Model 21, 142 (2015). https://doi.org/10.1007/s00894-015-2686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2686-1

Keywords

Navigation