Skip to main content
Log in

Theoretical insight on atmospheric chemistry of HFE-365mcf3: reactions with OH radicals, atmospheric lifetime, and fate of alkoxy radicals (CF3CF2CH(O)OCH3/CF3CF2CH2OCH2O)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, theoretical study on the mechanism and kinetics of the gas-phase reactions of CF3CF2CH2OCH3 (HFE-365mcf3) with the OH radicals have been performed using meta-hybrid modern density functional M06-2X in conjunction with 6-31+G(d,p) basis set. Reaction profiles for OH-initiated hydrogen abstraction are modeled including the formation of pre-reactive and post-reactive complexes at entrance and exit channels. Our calculations reveal that hydrogen abstraction from the –CH2 group is thermodynamically more facile than that from the –CH3 group. This is further ascertained by the calculated C-H bond dissociation energy of CF3CF2CH2OCH3 molecule. The rate constants of the titled reactions are computed over the temperature range of 250–450 K. The calculated rate constant value at 298 K is found to be in reasonable agreement with the experimental results. The atmospheric life time of HFE-365mcf3 is estimated to be 42 days. The atmospheric fate of the alkoxy radicals, CF3CF2CH(O)OCH3 and CF3CF2CH2OCH2O are also investigated for the first time using the same level of theory. Out of three plausible decomposition channels, our results clearly point out that reaction with O2 is the dominant atmospheric sink for the decomposition of CF3CF2CH(O)OCH3 radical in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sekiya A, Misaki S (2000) J Fluor Chem 101:215–221

    Article  CAS  Google Scholar 

  2. Powell RL (2002) J Fluor Chem 114:237–250

    Article  CAS  Google Scholar 

  3. McCulloch A (1999) J Fluor Chem 100:163–173

    Article  CAS  Google Scholar 

  4. Imasu R, Suga A, Matsuno T (1995) J Meteorol Soc Jpn 73:1123–1136

    Google Scholar 

  5. Blowers P, Tetrault KF, Morehead YT (2008) Theor Chem Accounts 119:369–381

    Article  CAS  Google Scholar 

  6. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2010) Environ Sci Technol 44(7):2354–2359

    Article  CAS  Google Scholar 

  7. Bravo I, Dıaz-de-Mera Y, Aranda A, Moreno E, Nutt DR, Marston G (2011) Phys Chem Chem Phys 13:17185–17193

    Article  CAS  Google Scholar 

  8. Ninomiya Y, Kawasaki M, Guschin A, Molina LT, Molina MJ, Wallington TJ (2000) Environ Sci Technol 34(14):2973–2978

    Article  CAS  Google Scholar 

  9. Oyaro N, Sellevåg SR, Nielsen CJ (2004) Environ Sci Technol 38:5567–5576

    Article  CAS  Google Scholar 

  10. Thomsen DL, Andersen VF, Nielsen OJ, Wallington TJ (2011) Phys Chem Chem Phys 13:2758–2764

    Article  CAS  Google Scholar 

  11. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215–223

    Article  CAS  Google Scholar 

  12. Mishra BK, Lily M, Chakrabartty AK, Bhattacharjee D, Deka RC, Chandra AK (2014) New J Chem 38:2813–2822

    Article  CAS  Google Scholar 

  13. Mishra BK (2014) J Mol Model 20:2444

    Article  Google Scholar 

  14. Mishra BK, Deka RC (2014) J Phys Chem A 118(38):8779–8786

    Article  CAS  Google Scholar 

  15. Singh HJ, Mishra BK, Rao PK (2012) Can J Chem 90(4):403–409

    Article  CAS  Google Scholar 

  16. Singh HJ, Gour NK, Srivastava P (2013) Mol Phys 111:3756–3761

    Article  CAS  Google Scholar 

  17. Singh HJ, Mishra BK, Gour NK (2010) Theor Chem Accounts 125:57–64

    Article  CAS  Google Scholar 

  18. Mishra BK (2014) RSC Adv 4(32):16759–16764

    Article  CAS  Google Scholar 

  19. Dalmasso PR, Taccone RA, Nieto JD, Cometto PM, Cobos CJ, Lane SI (2014) Atmos Environ 91:104–109

    Article  CAS  Google Scholar 

  20. Chandra AK, Uchimaru T (2001) Chem Phys Lett 334:200–206

    Article  CAS  Google Scholar 

  21. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  22. Beste A, Buchanan AC III (2010) Energy Fuels 24:2857–2867

    Article  CAS  Google Scholar 

  23. Dinadayalane TC, Paytakov G, Leszczynski J (2013) J Mol Model 19:2855–2864

    Article  CAS  Google Scholar 

  24. Lily M, Mishra BK, Chandra AK (2014) J Fluor Chem 161:51–59

    Article  CAS  Google Scholar 

  25. Mishra BK, Lily M, Chandra AK, Deka RC (2014) J Phys Org Chem 27(10):811–817

    Article  CAS  Google Scholar 

  26. Sandhiya L, Kolandaivel P, Senthilkumar K (2012) Struct Chem 23:1475–1488

    Article  CAS  Google Scholar 

  27. Mandal D, Sahu C, Bagchi S, Das AK (2013) J Phys Chem A 117:3739–3750

    Article  CAS  Google Scholar 

  28. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  29. Devi Kh J, Chandra AK (2011) Chem Phys Lett 502:23–28

    Article  Google Scholar 

  30. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  31. Frisch MJ et al. (2009) GAUSSIAN 09 (Revision B.01). Gaussian Inc, Wallingford

    Google Scholar 

  32. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  33. Beste A, Buchanan AC III (2012) Chem Phys Lett 550:19–24

    Article  CAS  Google Scholar 

  34. Younker JM, Beste A, Buchanan AC III (2012) Chem Phys Lett 545:100–106

    Article  CAS  Google Scholar 

  35. Csontos J, Rolik Z, Das S, Kallay M (2010) J Phys Chem A 114:13093–13103

    Article  CAS  Google Scholar 

  36. Kondo S, Takahashi A, Tokuhashi K, Sekiya A, Yamada Y, Saito K (2002) J Fluor Chem 117:47–53

    Article  CAS  Google Scholar 

  37. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  38. Brown RL (1981) J Res Natl Bur Stand 86:357–359

    Article  CAS  Google Scholar 

  39. Xiao R, Noerpel M, Luk HL, Wei Z, Spinney R (2014) Int J Quantum Chem 114:74–83

    Article  CAS  Google Scholar 

  40. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221–1228

    Article  CAS  Google Scholar 

  41. Singleton DL, Cvetonovoic RJ (1976) J Am Chem Soc 98:6812–6819

    Article  CAS  Google Scholar 

  42. Blanco MB, Rivela C, Teruel MA (2013) Chem Phys Lett 578:33–37

    Article  CAS  Google Scholar 

  43. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Nature 394:353–355

    Article  CAS  Google Scholar 

  44. Spivakovsky CM, Logan JA, Montzka SA, Balkanski YJ, Foreman-Fowler M, Jones DBA, Horowitz LW, Fusco AC, Brenninkmeijer CAM, Prather MJ, Wofsy SC, McElroy MB (2000) J Geophys Res 105(D7):8931–8980

    Article  CAS  Google Scholar 

  45. Bravo I, Aranda A, Hurley MD, Marston G, Nutt DR, Shine KP, Smith K, Wallington TJ (2010) J Geophys Res 115, D24317

    Article  Google Scholar 

  46. Mishra BK, Lily M, Deka RC, Chandra AK (2014) J Mol Graphics Model 50:90–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DB acknowledges CSIR, New Delhi, for financial assistance in form of Senior Research Fellowship. BKM is thankful to University Grants Commission, New Delhi for providing Dr. D. S. Kothari Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhupesh Kumar Mishra or Ramesh Chandra Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, D., Mishra, B.K. & Deka, R.C. Theoretical insight on atmospheric chemistry of HFE-365mcf3: reactions with OH radicals, atmospheric lifetime, and fate of alkoxy radicals (CF3CF2CH(O)OCH3/CF3CF2CH2OCH2O). J Mol Model 21, 69 (2015). https://doi.org/10.1007/s00894-015-2629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2629-x

Keywords

Navigation