Skip to main content
Log in

Hylleraas hydride binding energy: diatomic electron affinities

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical adiabatic electron affinities are often considered inaccurate because they are referenced to only a single value. Ground state electron affinities for all the main group elements and homonuclear diatomics were identified recently using the normalized binding energy of the hydrogen atom: [0.75420375(3)/2 = 0.37710187(1) eV]. Here we revisit experimental values and extend the identifications to diatomics in the G2-1 set. We assign new ground state electron affinities: (eV) Cl2, 3.2(2); Br2, 2.87(14); CH, 2.1(2); H2, 0.6 ; NH, 1.1, SiH, 1.90. Anion Morse potentials are calculated for H2 and N2 from positive electron affinities and for hyperfine superoxide states for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen ES, Chen ECM (2004) The electron capture detector and thermal electron reactions. Wiley, New York

  2. Chen ES, Chen ECM (2007) Electron affinities and activation energies for reactions with thermal electrons: SF6 and SF5. Phys Rev A76:032508

    Article  Google Scholar 

  3. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB (2002) Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations. Chem Rev 102:231–282

    Article  CAS  Google Scholar 

  4. National Institute of Standards and Technology (NIST) Chemistry WebBook, [http://webbook.nist.gov/ and Cccbdb.nist.gov/ (accessed 2013)

  5. Pritchard HO (1953) The determination of electron affinities. Chem Rev 52:529–563

    Article  CAS  Google Scholar 

  6. Massey HSW (1950) Negative ions. Cambridge University Press, Cambridge

  7. Lesk AM (1968) Use of the Hartree Fock approximation in calculating electron affinities. Phys Rev 171:7–10

    Article  CAS  Google Scholar 

  8. Efimov V (1970) Energy levels arising from resonant two-body forces in a three-body system. Phys Lett B 33:563–564

    Article  CAS  Google Scholar 

  9. Berry RS (1969) Small free negative ions. Chem Rev 69:533–542

    Article  CAS  Google Scholar 

  10. Wildt R (1939) Electron affinity in astrophysics. Astrophys J 89:295–301

    Article  CAS  Google Scholar 

  11. Hylleraas EA (1950) A new stable state of the negative hydrogen ion. Astrophys J 111:209–213

    Article  CAS  Google Scholar 

  12. Hylleraas EA (1964) The negative hydrogen ion in quantum mechanics and astrophysics. Astrophysica Norvegica 9:345–349

    CAS  Google Scholar 

  13. Bethe HM (2012) http://www.webofstories.com/play/4483 , accessed 7 July 2012

  14. Chen ES, Chen ECM (2013) The Hylleraas binding energy of hydride and electron affinities. J Theor Comp Chem 12:1350016

    Article  Google Scholar 

  15. Chen ES, Herder C, Keith H, Chen ECM (2010) Hund’s strong field states of superoxide and NO(−). J Theor Comp Chem 9:1–8

    Article  CAS  Google Scholar 

  16. Freeman RR (1971) I. Electron attachment to selected small molecules: II The development and charcterization of a photoionization/electron capture detector for use in gas chromatography systems. Doctoral dissertation, University of Houston

  17. Chen ES, Chen ECM (2003) Semiempirical characterization of homonuclear diatomic ions: 6. group VI and VII anions. J Phys Chem A 107:169–177

    Article  CAS  Google Scholar 

  18. Chen ECM, Herder C, Chang S, Ting R, Chen ES (2006) Experimental determination of spin–orbital coupling states of O2(−). J Phys B 39:2317–2333

    Article  CAS  Google Scholar 

  19. Jalbout AF, De Leon A, Adamowicz L, Trzaskowski B, Chen ECM, Herder C, Chen ES (2007) Theoretical, empirical and experimental electron affinities of SF6: solving the density functional enigma. J Theor Comp Chem 6:747–759

    Article  CAS  Google Scholar 

  20. Schiedt H, Weinkauf R (1995) Spin orbital coupling in superoxide. Z Naturforsch 50a:1041–1045

    Google Scholar 

  21. Herder C (2005) Experimental and theoretical determination of fundamental properties of molecular oxygen and other atmospheric molecules using the pulsed discharge electron capture detector and semi- empirical quantum mechanical calculations. Siemens application, available on request

  22. Toader EI, Graham WG (2008) Transient induced molecular negative ions formed in cold electron collisions with polarized molecules. Nukleonika 53:123–126

    CAS  Google Scholar 

  23. Pai S (2010) Experimental and theoretical determination of fundamental properties of molecular oxygen and other atmospheric molecules using the pulsed discharge electron capture detector and semi-empirical quantum mechanical calculations. Siemens application available on request

  24. Pai S, Anderson C, Chen ES, Chen ECM (2011) What are the 54 electron affinities of O2. Mol Struct 23:407–410

    Google Scholar 

  25. Herschbach DR (1987) Molecular dynamics of elementary chemical reactions (Nobel Lecture). Angew Chem Int Ed Engl 26:1221–1243

    Article  Google Scholar 

  26. Person WB (1963) Electron affinities of some halogen molecules and the charge-transfer frequency. J Chem Phys 38:109–116

    Article  CAS  Google Scholar 

  27. Khuseynov D, Fontana M, Sanov A (2012) Photoelectron spectroscopy and photochemistry of tetracyanoethylene radical anion in the gas phase. Chem Phys Letters 550:15–18

    Article  CAS  Google Scholar 

  28. Dinu L, Gerrit C, Groenenboom WJ, van der Zande (2003) Vibronic coupling in the superoxide anion: the vibrational dependence of the photoelectron angular distribution. J Chem Phys 119:8865–8872

    Article  Google Scholar 

  29. Cavanagh SJ, Gibson ST, Lewis BR (2010) Photodetachment of Oˉ from threshold to 1.2 eV electron kinetic energy using velocity-map imaging. J Phys Conf Ser 212:012034

    Article  Google Scholar 

  30. Burch DS, Smith SJ, Branscomb LM (1958) Photodetachment of O2 . Phys Rev 112:171–175

    Article  CAS  Google Scholar 

  31. Pack JL, Phelps AV (1966) Electron attachment and detachment. I. Pure O2 at low energy. J Chem Phys 44:1870–1883

    Article  CAS  Google Scholar 

  32. Page FM (1969) Negative ions and the magnetron. Wiley-Interscience, New York

    Google Scholar 

  33. Stockdale JAD, Compton RN, Hurst GS, Reinhardt PW (1969) Collisions of monoenergetic electrons with NO2: Possible lower limits to electron affinities of O2 and NO. J Chem Phys 50:2176–2180

    Article  CAS  Google Scholar 

  34. Siegel MW, Celotta RJ, Hall JL, Levine J, Bennett RA (1972) Molecular photodetachment spectroscopy. I. The electron affinity of nitric oxide and the molecular constants of NO. Phys Rev A 6:607–631

    Article  CAS  Google Scholar 

  35. Williams JM, Hamill WH (1968) Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer. J Chem Phys 49:4467–4477

    Article  CAS  Google Scholar 

  36. Bailey TL, Mahadevan P (1970) Electron transfer and detachment in collisions of low-energy negative ions with O2. J Chem Phys 52:179–190

    Article  CAS  Google Scholar 

  37. Vogt D, Hauffle B, Neuert H (1970) Ladungsaustausch-reaktionen einiger negativer ionen mit O2 und die elektronenaffinitat des O2. Z Phys 232:439–444

    Article  CAS  Google Scholar 

  38. Celotta RJ, Bennett RA, Hall JL, Levine J, Siegel MW (1971) Electron affinity of O2 by laser photodetachment. Bull Am Phys Soc 16:212

    Google Scholar 

  39. Celotta RJ, Bennett RA, Hall JL, Siegel MW, Levine J (1972) Molecular photodetachment spectrometry. II. The electron affinity of O2 and the structure of O2 . Phys Rev A 6:631–641

    Article  CAS  Google Scholar 

  40. Shimamori H, Fessenden RW (1981) Thermal electron attachment to oxygen and van der Waals molecules containing oxygen. J Chem Phys 74:453–467

    Article  CAS  Google Scholar 

  41. Gooding JM, Hayhurst AN (1987) Kinetics of electron attachment to oxygen and water in flames. Nature 281:204–206

    Article  Google Scholar 

  42. Caspar H, Tiedje J (1980) Response of electron-capture detector to hydrogen, oxygen, nitrogen, carbon dioxide, nitric oxide and nitrous oxide. J Chromatogr 193:142–146

    Article  Google Scholar 

  43. Travers MJ, Cowles DC, Ellison GB (1989) Reinvestigation of electron affinities of O2 and NO. Chem Phys Lett 164:449–455

    Article  CAS  Google Scholar 

  44. Ervin KM, Anusiewicz I, Skurski P, Simons J, Lineberger WC (2003) The only stable state of O2 Is the X 2Πg ground state and it (Still!) has an adiabatic electron detachment energy of 0.45 eV. J Phys Chem A 107:8521–8529

    Article  CAS  Google Scholar 

  45. Le Garrec J, Sidko O, Queffelec J, Hamon S, Mitchell J, Rowe B (1997) Experimental studies of cold electron attachment to SF6, CF3Br, and CCl2F2. J Chem Phys 107:54–63

    Article  Google Scholar 

  46. Chen ECM, Shuie LR, D’sa ED, Batten C, Wentworth WE (1988) Negative ion states of sulfur hexafluoride. J Chem Phys 88:4711–4719

    Article  CAS  Google Scholar 

  47. Datskos PG, Carter JG, Christophorou LG (1995) Photodetachment of SF6 . Chem Phys Lett 239:38–43

    Article  CAS  Google Scholar 

  48. Pelc A (2012) Generation of negative ions from SF6 gas by means of hot surface ionization. Rapid Commun Mass Spectrom 26:577–580

    Article  CAS  Google Scholar 

  49. Chen ES, Chen ECM (2013) Negative surface ionization electron affinities and activation energies of SFn. Rapid Commun Mass Spectrometry 27:577–582

    Google Scholar 

  50. Chen ECM, Wentworth WE (1975) The experimental values of atomic electron affinities: their selection and periodic behavior. J Chem Ed 52:486–489

    Article  CAS  Google Scholar 

  51. Lacmann K, Herschbach DR (1970) Collisional excitation and ionization of K atoms by diatomic molecules: the role of ion pair states. Chem Phys Lett 6:106–110

    Article  CAS  Google Scholar 

  52. DeCorpo JJ, Franklin JL (1971) Electron affinities of the halogen molecules by dissociative electron attachment. J Chem Phys 54:1885–1888

    Article  CAS  Google Scholar 

  53. Locht R, Momigny J (1970) Mass spectrometric determination of electron affinities of radicals. Chem Phys Lett 6:273–276

    Article  CAS  Google Scholar 

  54. Smith LG (1937) Ionization and dissociation of polyatomic molecules by electron impact. I methane Phys Rev 51:263–275

    Article  CAS  Google Scholar 

  55. Shiell RC, Hu XK, Hu QJ, Hepburn JW (2000) Threshold ion-pair production spectroscopy (TIPPS) of H2 and D2. J Phys Chem A 104:4339–4342

    Article  CAS  Google Scholar 

  56. Flores RA (1985) Negative ion states for H2(−) and the second row homonuclear diatomics. Masters thesis University of Houston Clear Lake

  57. Kreckel H, Herwig P, Schwalm D, Cızek M, Golser R, Heber O, Jordon-Thaden B, Wolf A (2014) Metastable states of diatomic hydrogen anions. Journal of Physics Conference Series 488: 012034

  58. Srivastava S, Sathyamurthy N, Varandas AJC (2012) An accurate ab initio potential energy curve and the vibrational bound states of H2 . Chem Phys 398:160–167

    Article  CAS  Google Scholar 

  59. Chen ES, Pai S, Chen ECM (2015) Hyperfine electron affinities of molecular oxygen. Comput Theor Chem. doi: 10.1016/j.comptc.2014.10.026

Download references

Acknowledgments

The support of Hypercube and theWentworth Foundation is appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S. Chen.

Additional information

Attributions

The Morse potentials for N2 and H2 anions were calculated using HIMPEC procedures developed by R.A.F. for the diatomic anions of the second row atoms. The PDECD data and development of the CURES-EC method were carried out by C.H. The development of s-AMP method and the collection of the cyclic voltammetry data were carried out by S.P. The new applications of the theoretical methods were carried out by D.P., T.L., and R.R. C.H., S.P., T.L., R.R. and D.P. were Wentworth Scholars and T.L. and R.R. were HYPERCHEM Scholars who conducted research under the direction of E.S.C., E.C.M.C., and H.K. The paper was written by the latter and has been examined by all of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, E.S., Keith, H., Lim, T. et al. Hylleraas hydride binding energy: diatomic electron affinities. J Mol Model 21, 79 (2015). https://doi.org/10.1007/s00894-015-2598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2598-0

Keywords

Navigation