Skip to main content
Log in

Is 1-nitro-1-triazene a high energy density material?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An azo bridge (–N = N–) can not only desensitize explosives but also dramatically increase their heats of formation and explosive properties. Amino and nitro are two important high energy density functional groups. Here, we present calculations on 1-nitro-1-triazene (NH2–N = N–NO2). Thermal stability and detonation parameters were predicted theoretically at CCSD(T)/6-311G* level, based on the geometries optimized at MP2/6-311G* level. It was found that the p → π conjugation interaction and the intramolecular hydrogen bonding that exist in the system together increase the thermal stability of the molecule. Moreover, the detonation parameters were evaluated to be better than those of the famous HMX and RDX. Finally, the compound was demonstrated to be a high energy density material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Strout DL (2004) Cage isomers of N14 and N16: nitrogen molecules that are not a multiple of six. J Phys Chem A 108(49):10911–10916

    CAS  Google Scholar 

  2. Ciezak JA, Trevino SF (2005) The inelastic neutron scattering spectra of α-3-amino-5-nitro-1,2,4-2H-triazole: experiment and DFT calculations. Chem Phys Lett 403(4–6):329–333

    CAS  Google Scholar 

  3. Chavez DE, Hiskey MA, Gilardi RD (2000) 3,3′-azobis(6-amino-1,2,4,5-tetrazine): a novel high-nitrogen energetic material. Angew Chem Int Ed 39(10):1791–1793

    Article  CAS  Google Scholar 

  4. Kerth J, Löbbecke S (2002) Synthesis and characterization of 3,3′-azobis(6-amino-1,2,4,5-tetrazine) DAAT—a new promising nitrogen-rich compound. Propell Explos Pyrot 27(3):111–118

    Article  CAS  Google Scholar 

  5. Lesnikovich AI, Ivashkevich OA, Levchik SV, Balabanovich AI, Gaponik PN, Kulak AA (2002) Thermal decomposition of aminotetrazoles. Thermochim Acta 388(1–2):233–251

    Article  CAS  Google Scholar 

  6. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54(38):11525–11536

    Article  CAS  Google Scholar 

  7. Ye C, Shreeve JM (2008) New atom/group volume additivity method to compensate for the impact of strong hydrogen bonding on densities of energetic materials. J Chem Eng Data 53(2):520–524

    Article  CAS  Google Scholar 

  8. Huynh M-HV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R (2004) Polyazido high-nitrogen compounds: hydrazo- and Azo-1,3,5-triazine. Angew Chem Int Ed 43(37):4924–4928

    Article  CAS  Google Scholar 

  9. Rodriguez MA, Campana CF, Rae AD, Graeber E, Morosin B (2005) Form III of 2,2′,4,4′,6,6′-hexanitroazobenzene (HNAB-III). Acta Crystallogr C 61(3):o127–o130

    Article  Google Scholar 

  10. Wiberg N, Bayer H, Bachhuber H (1975) Isolierung von tetrazen, N4H4. Angew Chem 87(6):202–203

    Article  CAS  Google Scholar 

  11. Corey EJ, Pasto DJ, Mock WL (1961) Chemistry of diimide ii. Stereochemistry of hydrogen transfer to carbon–carbon multiple bonds. J Am Chem Soc 83(13):2957–2958

    Article  CAS  Google Scholar 

  12. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):618–622

    Article  Google Scholar 

  13. Purvis GD, Bartlett RJ (1982) A full coupled‐cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76(4):1910–1918

    CAS  Google Scholar 

  14. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371

    CAS  Google Scholar 

  15. Rice BM, Hare JJ, Byrd EFC (2007) Accurate predictions of crystal densities using quantum mechanical molecular volumes. J Phys Chem A 111(42):10874–10879

    CAS  Google Scholar 

  16. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    Article  CAS  Google Scholar 

  17. Bulat F, Toro-Labbé A, Brinck T, Murray J, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

    Article  CAS  Google Scholar 

  18. Liu Y, Gong X, Wang L, Wang G, Xiao H (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2′,4,4′,6,6′-hexanitroazobenzene derivatives. J Phys Chem A 115(9):1754–1762

    CAS  Google Scholar 

  19. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263

    Article  CAS  Google Scholar 

  20. Politzer P, Concha MC, Grice ME, Murray JS, Lane P (1998) Computational investigation of the structures and relative stabilities of amino/nitro derivatives of ethylene. J Mol Struct (THEOCHEM) 452(1–3):75–83

    Article  CAS  Google Scholar 

  21. Rashkeev SN, Kuklja MM, Zerilli FJ (2003) Electronic excitations and decomposition of 1,1-diamino-2,2-dinitroethylene. Appl Phys Lett 82(9):1371–1373

    Article  CAS  Google Scholar 

  22. Kimmel AV, Sushko PV, Shluger AL, Kuklja MM (2007) Effect of charged and excited states on the decomposition of 1,1-diamino-2,2-dinitroethylene molecules. J Chem Phys 126(23):234711–234721

    Google Scholar 

  23. Gindulytė A, Massa L, Huang L, Karle J (1999) Proposed mechanism of 1,1-diamino-dinitroethylene decomposition: a density functional theory study. J Phys Chem A 103(50):11045–11051

    Google Scholar 

  24. Huynh MHV, Hiskey MA, Pollard CJ, Montoya DP, Hartline EL, Gilardi R (2004) 4,4′,6,6′-tetra-substituted hydrazo- and Azo-1,3,5-triazines. JEnergyMater 22:217–229

    CAS  Google Scholar 

  25. Politzer P, Martinez J, Murray J, Concha M, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    Article  CAS  Google Scholar 

  26. Jianfen F, Heming X (1996) Theoretical study on pyrolysis and sensitivity of energetic compounds. (2) nitro derivatives of benzene. J Mol Struct (THEOCHEM) 365(2–3):225–229

    Article  Google Scholar 

  27. Hervé G, Jacob G, Latypov N (2005) The reactivity of 1,1-diamino-2,2-dinitroethene (FOX-7). Tetrahedron 61(28):6743–6748

    Article  Google Scholar 

  28. Anniyappan M, Talawar MB, Gore GM, Venugopalan S, Gandhe BR (2006) Synthesis, characterization and thermolysis of 1,1-diamino-2,2-dinitroethylene (FOX-7) and its salts. J Hazard Mater 137(2):812–819

    Article  CAS  Google Scholar 

  29. Chung G, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104(23):5647–5650

    CAS  Google Scholar 

  30. Akhavan J (2004) The chemistry of explosives. 2nd ed edn. Royal Society of Chemistry, Cambridge, UK

  31. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell Explos Pyrot 22(5):249–255

    Article  CAS  Google Scholar 

  32. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44(33):5188–5240

    Article  Google Scholar 

  33. Tosi P, Lu W, Bassi D, Tarroni R (2001) The reaction N2++N2 → N3++N from thermal to 25 eV. J Chem Phys 114(5):2149–2153

    CAS  Google Scholar 

  34. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 38(13–14):2004–2009

    Article  CAS  Google Scholar 

  35. Jasper S, Hammond A, Thomas J, Kidd L, Strout DL (2011) N22C2 versus N24: role of molecular curvature in determining isomer stability. J Phys Chem A 115(42):11915–11918

    CAS  Google Scholar 

  36. Casey K, Thomas J, Lambert Z, Strout DL (2009) Metal-Ion binding to high-energy N12C4. J Phys Chem A 113(27):7888–7891

    CAS  Google Scholar 

  37. Pinkston A, McAdory D, Jones J, Shields D, Langham R, Casey K, Strout DL (2008) Stability of N18C6H6: triangular versus hexagonal structure. J Phys Chem A 112(5):1090–1094

    CAS  Google Scholar 

  38. Strout DL (2006) Isomer stability of N6C6H6 cages. J Phys Chem A 110(22):7228–7231

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Butong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, W., Yan, T. & Li, B. Is 1-nitro-1-triazene a high energy density material?. J Mol Model 20, 2362 (2014). https://doi.org/10.1007/s00894-014-2362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2362-x

Keywords

Navigation