Skip to main content

Advertisement

Log in

Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manaa MR, Fried LE, Melius CF, Elstner M, Frauenheim T (2002) Decomposition of HMX at extreme conditions: a molecular dynamics simulation. J Phys Chem A 106:9024–9029

    Article  CAS  Google Scholar 

  2. Brill TB, Brush PJ (1992) Condensed phase chemistry of explosives and propellants at high temperature: HMX, RDX and BAMO [and Discussion]. Philos Trans R Soc 339:377–385

    Article  CAS  Google Scholar 

  3. Prasad K, Yetter RA, Smooke MD (1998) An eigenvalue method for computing the burning rate of HMX propellants. Combust Flame 115:406–416

    Article  CAS  Google Scholar 

  4. Zhang SW, Truong TN (2000) Thermal rate constants of the NO2 fission reaction of gas phase α-HMX: a direct ab Initio dynamics study. J Phys Chem A 104:7304–7307

    Article  CAS  Google Scholar 

  5. Zhang SW, Truong TN (2001) Branching ratio and pressure dependent rate constants of multichannel unimolecular decomposition of gas-phase α-HMX: an ab Initio dynamics study. J Phys Chem A 105:2427–2434

    Article  CAS  Google Scholar 

  6. Wang J, Brower KR, Naud DL (1997) Evidence of an elimination mechanism in thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine and related compounds under high pressure in solution. J Org Chem 62:9055–9060

    Article  CAS  Google Scholar 

  7. Sharia O, Kuklja MM (2011) Modeling thermal decomposition mechanisms in gaseous and crystalline molecular materials: application to β-HMX. J Phys Chem B 115:12677–12686

    Article  CAS  Google Scholar 

  8. Ge NN, Wei YK, Ji GF, Chen XR, Zhao F, Wei DQ (2012) Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations. J Phys Chem B 116:13696–13704

    Article  CAS  Google Scholar 

  9. Conroy MW, Oleynik II, Zybin SV, White CT (2008) First-principles anisotropic constitutive relationships in β-Cyclotetramethylene tetranitramine (β-HMX). J Appl Phys 104:113501

    Article  Google Scholar 

  10. Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM (2012) Study on structure, sensitivity and mechanical properties of HMX and HMX-based PBXs with molecular dynamics simulation. Comput Theor Chem 999:21–27

    Article  CAS  Google Scholar 

  11. Zhou TT, Zybin SV, Liu Y, Huang FL, Goddard WA (2012) Anisotropic shock sensitivity for β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine energetic material under compressive-shear loading from ReaxFF-lg reactive dynamics simulations. J Appl Phys 111:124904

    Article  Google Scholar 

  12. Manaa MR, Reed EJ, Fried LE, Goldman N (2009) Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives. J Am Chem Soc 131:5483–5487

    Article  CAS  Google Scholar 

  13. Chang J, Lian P, Wei DQ, Chen XR, Zhang QM, Gong ZZ (2010) Thermal decomposition of the solid phase of nitromethane: ab initio molecular dynamics simulations. Phys Rev Lett 105:188302

    Article  Google Scholar 

  14. Strachan A, van Duin ACT, Chakraborty D, Dasgupta SD, Goddard IIIWA (2003) Shock waves in high-energy materials: the initial chemical events in nitramine RDX. Phys Rev Lett 91:098301

    Article  Google Scholar 

  15. Manaa MR, Fried LE (1999) Intersystem crossings in model energetic materials. J Phys Chem A 103:9349–9354

    Article  CAS  Google Scholar 

  16. Gilman JJ (1995) Chemical reactions at detonation fronts in solids. Philos Mag B 71:1057–1068

    Article  CAS  Google Scholar 

  17. Reed RJ, Joannopoulos JD, Fried LE (2000) Electronic excitations in shocked nitromethane. Phys Rev B 62:16500–16509

    Article  CAS  Google Scholar 

  18. Manaa MR (2003) Shear-induced metallization of triamino-trinitrobenzene crystals. Appl Phys Lett 83:1352–1354

    Article  Google Scholar 

  19. Gillman JJ (1993) Shear-induced metallization. Philos Mag B 67:207–214

    Article  Google Scholar 

  20. Gilman JJ (1995) Mechanism of shear-induced metallization. Czech J Phys 45:913–919

    Article  CAS  Google Scholar 

  21. Wu CJ, Yang LH, Fried LE, Quenneville J, Martinez TJ (2000) Electronic structure of solid 1,3,5-triamino-2,4,6-trinitrobenzene under uniaxial compression: possible role of pressure-induced metallization in energetic materials. Phys Rev B 67:235101

    Article  Google Scholar 

  22. Kuklja MM, Kunz AB (2000) Modeling of shock compression of RDX with defects. American Institute of Physics Conference Series 505:401–404

    CAS  Google Scholar 

  23. Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa MR (2002) Electronic structure of solid nitromethane: effects of high pressure and molecular vacancies. J Chem Phys 117:788–799

    Article  CAS  Google Scholar 

  24. Reed EJ (2012) Electron-ion coupling in shocked energetic materials. J Phys Chem C 116:2205–2211

    Article  CAS  Google Scholar 

  25. Qiu L, Xiao HM, Zhu WH, Xiao JJ, Zhu W (2006) Ab initio and molecular dynamics studies of crystalline TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin). J Phys Chem B 110:10651–10661

    Article  CAS  Google Scholar 

  26. Kuklja MM, Stefanovich EV, Kunz AB (2000) An excitonic mechanism of detonation initiation in explosives. J Chem Phys 112:3417–3423

    Article  CAS  Google Scholar 

  27. Chacham H, Zhu X, Louie SG (1992) Pressure-induced insulator-metal transitions in solid xenon and hydrogen: a first-principles quasiparticle study. Phys Rev B 46:6688

    Article  CAS  Google Scholar 

  28. Kuklja MM, Kunz AB (1999) Ab initio simulation of defects in energetic materials: hydrostatic compression of cyclotrimethylene trinitramine. J Appl Phys 86:4428–4434

    Article  CAS  Google Scholar 

  29. Reed EJ, Manaa MR, Fried LE, Glaesemann KRA (2008) Transient semimetallic layer in detonating nitromethane. Nat Phys 4:72–76

    Article  CAS  Google Scholar 

  30. The CP2K develops group. http://www.cp2k.org/

  31. Manaa MR, Reed EJ, Fried LE, Galli G, Gygi F (2004) Early chemistry in hot and dense nitromethane: molecular dynamics simulations. J Chem Phys 120:10146–10153

    Article  Google Scholar 

  32. Bickham SR, Kress JD, Collins LA (2000) Molecular dynamics simulations of shocked benzene. J Chem Phys 112:9695–9698

    Article  CAS  Google Scholar 

  33. Reed EJ, Fried LE, Joannopoulos JD (2003) A method for tractable dynamical studies of single and double shock compression. Phys Rev Lett 90:235503

    Article  Google Scholar 

  34. Kadau K, Germann TC, Lomdahl PS, Holian BL (2002) Microscopic view of structural phase transitions induced by shock waves. Science 296:1681–1684

    Article  CAS  Google Scholar 

  35. Goldman N, Reed EJ, Kuo IF, Fried LE, Mundy CJ, Curioni A (2009) Ab initio simulation of the equation of state and kinetics of shocked water. J Chem Phys 130:124517

    Article  Google Scholar 

  36. Mundy CJ, Curioni A, Goldman N, Kuo I-FW (2008) Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression. J Chem Phys 128:184701

    Article  Google Scholar 

  37. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  38. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) A QM/MM implementaton of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B 105:569–585

    Article  CAS  Google Scholar 

  39. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interaction of nucleic acid base pairs: A density-functional-theory based treatment. J Chem Phys 114:5149–5155

    Article  CAS  Google Scholar 

  40. Cady HH, Larson AC, Kromer DT (1963) The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr 16:617–632

    Article  CAS  Google Scholar 

  41. Choi CS, Boutin HP (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Crystallogr B 26:1235–1240

    Article  CAS  Google Scholar 

  42. Lu LY, Wei DQ, Chen XR, Lian D, Ji GF, Zhang QM, Gong ZZ (2008) The first principle studies of the structural and vibrational properties of solid β-HMX under compression. Mol Phys 106:2569–2580

    Article  CAS  Google Scholar 

  43. Lian D, Lu LY, Wei DQ, Zhang QM, Gong ZZ, Guo YX (2008) High-pressure behaviour of β-HMX crystal studied by DFT-LDA. Chin Phys Lett 25:899–902

    Article  CAS  Google Scholar 

  44. Zerilli FJ, Kuklja MM (2006) First principles calculation of the mechanical compression of two organic molecular crystals. J Phys Chem A 110:5173–5179

    Article  CAS  Google Scholar 

  45. Cui HL, Ji GF, Zhao JJ, Zhao F, Chen XR, Zhang QM, Wei DQ (2010) Ab initio and molecular dynamics studies of solid β-HMX: effects of hydrostatic pressure and high temperature. Mol Simulat 36:670–681

    Article  CAS  Google Scholar 

  46. Sewell TD (1998) Monte carlo calculations of the hydrostatic compression of hexahydro-1,3,5-trinitro-1,3,5-triazineand and β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetr- azocie. J Appl Phys 83:4142–4145

    Article  CAS  Google Scholar 

  47. Sorescu DC, Rice BM, Thompson DL (1999) Theoretical studies of the hydrostatic compression of RDX, HMX, HNIW and PETN crystals. J Phys Chem B 103:6783–6790

    Article  CAS  Google Scholar 

  48. Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) First-principles study of the polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J Phys Chem B 111:12715–12722

    Article  CAS  Google Scholar 

  49. Cui HL, Ji GF, Chen XR, Zhu WH, Zhao F, Wen Y, Wei DQ (2010) First-principles study of high-pressure behavior of solid β-HMX. J Phys Chem A 114:1082–1092

    Article  CAS  Google Scholar 

  50. Korobeinichev OP, Kuibida LV, Madirbaev VZ (1984) Investigation of the chemical structure of the HMX flame. Combust Explo Shock + 20:2043–2046

  51. Hanson-Parr DM, Parr TP (1991) Proceedings of the 28th JANNAF Combustion Subcommittee Meeting, CPIA Publication 573, vol III: 369–378

  52. Pulham CR, Millar DIA, Oswald IDH et al. (2010). High-pressure studies of energetic materials. In: Boldyreva E, Dera P (eds) High-pressure crystallography. Springer, Dordrecht, pp 447–457

  53. Tang CJ, Lee YJ, Kudva G, Litzinger TA (1999) A study of the gas-phase chemical structure during CO2 laser assisted combustion of HMX. Combust Flame 117:170–188

    Article  CAS  Google Scholar 

  54. Guo YQ, Greenfield M, Bernsteina ER (2005) Decomposition of nitramine energetic materials in excited electronic states: RDX and HMX. J Chem Phys 122:244310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support by the National Natural Science Foundation of China under Grant No. 11174214, the National Key Laboratory Fund for Shock Wave and Detonation Physics Research of the China Academy of Engineering Physics under Grant No. 2012-Zhuan-08, the Science and Technology Development Foundation of China Academy of Engineering Physics under Grant Nos. 2012A0201007 and 2013B0101002, the Defense Industrial Technology Development Program of China under Grant No. B1520110002, and the National Basic Research Program of China under Grant Nos. 2010CB731600 and 2011CB808201. We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Rong Chen or Guang-Fu Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, NN., Wei, YK., Zhao, F. et al. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique. J Mol Model 20, 2350 (2014). https://doi.org/10.1007/s00894-014-2350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2350-1

Keywords

Navigation