Skip to main content
Log in

Reaction of chlorine radical with tetrahydrofuran: a theoretical investigation on mechanism and reactivity in gas phase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Reaction of chlorine (Cl) radical with heterocyclic saturated ether, tetrahydrofuran has been studied. The detailed reactivity and mechanism of this reaction is analyzed using hybrid density functional theory (DFT), B3LYP and BB1K methods, and aug-cc-pVTZ basis set. To explore the mechanism of the reaction of tetrahydrofuran with Cl radical, four possible sites of hydrogen atom (H) abstraction pathways in tetrahydrofuran were analyzed. The barrier height and rate constants are calculated for the four H-abstraction channels. The BB1K calculated rate constant for α-axial H-abstraction is comparable with the experimentally determined rate constant. It reflects that α-axial H-abstraction is the main degradation pathway of tetrahydrofuran with Cl radical. DFT-based reactivity descriptors are also calculated and these values describe α-axial H-abstraction as the main reaction channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh H, Chen Y, Standt A, Jacob D, Blake D, Heikes B, Snow J (2001) Evidence from the pacific troposphere for large global sources of oxygenated organic compounds. Nature 410:1078–1081

    Article  CAS  Google Scholar 

  2. Giri BR, Roscoe JM (2010) Kinetics of the reactions of Cl atoms with several ethers. J Phys Chem A 114:8369–8375

    Article  CAS  Google Scholar 

  3. Tiu GC, Tao FM (2006) Theoretical mechanisms and kinetics of the hydrogen abstraction reaction of acetone by chlorine radical. Chem Phys Lett 428:42–48

    Article  CAS  Google Scholar 

  4. Mϋller H (2012) Tetrahydrofuran. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

  5. Giri BR, Roscoe JM, Garcia NG, Olzmann M, Lo JMH, Marriott RA (2011) Experimental and theoretical investigation of the kinetics of the reaction of atomic chlorine with 1,4-dioxane. J Phys Chem A 115:5105–5111

    Article  CAS  Google Scholar 

  6. Vereecken L, Francisco JS (2012) Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem Soc Rev 41:6259–6293

    Article  CAS  Google Scholar 

  7. Mellouki A, Bras LG, Sidedottom H (2003) Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem Rev 103:5077–5096

    Article  CAS  Google Scholar 

  8. Srinivasulu G, Rajakumar B (2013) Theoretical investigations on the kinetics of H‑abstraction reactions from CF3CH(OH)CF3 by OH radicals. J Phys Chem A 117:4534–4544

    Article  CAS  Google Scholar 

  9. Singh HB, Kasting JF (1988) Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J Atmos Chem 7:261–285

    Article  CAS  Google Scholar 

  10. Oum KW, Lakin MJ, DeHaan DO, Brauers T, Finlayson-Pitts BJ (1998) Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 279:74–77

    Article  CAS  Google Scholar 

  11. Mishra BK, Chakrabartty AK, Deka RC (2013) Theoretical investigation of the gas-phase reactions of CF2ClC(O)OCH3 with the hydroxyl radical and the chlorine atom at 298 K. J Mol Model 19:3263–3270

    Article  CAS  Google Scholar 

  12. Singh HJ, Gour NK, Rao PK, Tiwari L (2013) Theoretical investigation on the kinetics and branching ratio of the gas phase reaction of sevoflurane with Cl atom. J Mol Model 19:4815–4822

    Article  CAS  Google Scholar 

  13. Atkinson R, Baulch D, Cox R, Crowley J, Hampson R, Hynes R, Jenkin M, Rossi M, Troe J (2006) Evaluated kinetic and photochemical data for atmospheric chemistry: vol II– gas phase reactions of organic species. J Atmos Chem Phys 6:3625–4055

    Article  CAS  Google Scholar 

  14. Sulkova K, Sulka M, Louis F, Neogrady P (2013) Atmospheric reactivity of CH2ICl with OH radicals: high-level OVOS CCSD(T) calculations for the X‑abstraction pathways (X = H, Cl, or I). J Phys Chem A 117:771–782

    Article  CAS  Google Scholar 

  15. Moreno A, Salgado MS, Martín MP, Martínez E, Cabanas B (2012) Kinetic study of the gas phase reactions of a series of alcohols with the NO3 radical. J Phys Chem A 116:10383–10389

    Article  CAS  Google Scholar 

  16. Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR, Rowland FS (1996) Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights. J Geophys Res 101:4331–4340

    Article  CAS  Google Scholar 

  17. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394:353–356

    Article  CAS  Google Scholar 

  18. Wingenter OW, Blake DR, Blake NJ, Sive BC, Rowland FS, Atlas E, Flocke F (1999) Tropospheric hydroxyl and atomic chlorine concentration, and mixing timescales determined from hydrocarbon measurements made over the Southern Ocean. J Geophys Res 104:21819–21828

    Article  CAS  Google Scholar 

  19. Rayon VM, Sordo JA (2005) Pseudorotation motion in tetrahydrofuran: an ab initio study. J Chem Phys 122:204303–204308

    Article  Google Scholar 

  20. Yang T, Su G, Ning C, Deng J, Wang F, Zhang S, Ren X, Huang Y (2007) New diagnostic of the most populated conformer of tetrahydrofuran in the gas phase. J Phys Chem A111:4927–4933

    Article  Google Scholar 

  21. Ballesteros B, Ceacero-Vega AA, Garzon A, Jimenez E, Albaladejo J (2009) Kinetics and mechanism of the tropospheric reaction of tetrahydropyran with Cl atoms. J Photochem Photobiol A Chem 208:186–194

    Article  CAS  Google Scholar 

  22. Wu J-Y, Li J-Y, Li Z-S, Sun C-C (2004) Theoretical study of the reactions of CF3OCHF2 with the Hydroxyl radical and the chlorine atom. Chem Phys Chem 5:1336–1344

  23. Geerlings P, de Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti conelation energy formula into a functional of electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Singh HJ, Mishra BK (2013) Ab initio studies on the reactivity of the CF3OCH2O radical: thermal decomposition vs. reaction with O2. J Mol Model 16:1473–1480

    Article  Google Scholar 

  27. Riley KE, Brothers EN, Ayers KB, Merz KM (2005) Accurate atomic and molecular calculations without gradient corrections: scaled SVWNV density functional. J Chem Theory Comput 1:546–553

    Article  CAS  Google Scholar 

  28. Sousa SF, Fernandrino PA, Ramos MJ (2007) General performance of density functionals. J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  29. Zhao Y, Pu J, Benjamin JL, Truhlar DG (2004) Tests of second-generation and third-generation density functional for thermochemical kinetics. Phys Chem Chem Phys 6:673–676

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  31. Parveen S, Chandra AK (2009) Theoretical studies on kinetics and reactivity of the gas-phase addition and H-abstraction reactions of pyridine with atomic chlorine. J Phys Chem A 113:177–183

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc, Wallingford

    Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian, Inc, Wallingford

    Google Scholar 

  34. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  35. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  36. Laidler KJ, King MC (1983) The development of transition-state theory. J Phys Chem 87:2657–2664

    Article  CAS  Google Scholar 

  37. Laidler KJ (2004) Chemical kinetics, 4th edn. Pearson Education, Delhi

    Google Scholar 

  38. McQuarrie DA (1973) Statistical thermodynamics. University Science, Mill Valley

    Google Scholar 

  39. Wigner E (1932) Über das Überschreiten von potentials chwellen bei chemischen Reaktionen. Z Phys Chem B19:203–216

    CAS  Google Scholar 

  40. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  41. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. Chem Phys Chem 14:278–294

    Article  CAS  Google Scholar 

  42. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  43. Nguyen HMT, Peeters J, Nguyen MT, Chandra AK (2004) Use of DFT-based reactivity descriptors for rationalizing radical reactions: a critical analysis. J Phys Chem A 108:484–489

    Article  CAS  Google Scholar 

  44. Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci U S A 82:6723–6726

    Article  CAS  Google Scholar 

  45. Hemelsoet K, Van Speybroeck V, Waroquier M (2007) How useful are reactivity indicators for the description of hydrogen abstraction reactions on polycyclic aromatic hydrocarbons? Chem Phys Lett 444:17–22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.B. is thankful to Indian Institute of Technology Patna for financial support. The authors are grateful to IIT Patna for providing general research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranga Subramanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

Cartesian coordinates (Table S1) and calculated unscaled vibrational frequencies (Table S2) for optimized geometries of reactants, transition states, molecular complexes and products at B3LYP/aug-cc-pVTZ level of theory. (DOC 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S., Subramanian, R. Reaction of chlorine radical with tetrahydrofuran: a theoretical investigation on mechanism and reactivity in gas phase. J Mol Model 20, 2262 (2014). https://doi.org/10.1007/s00894-014-2262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2262-0

Keywords

Navigation