Skip to main content
Log in

Effect of protonation and hydrogen bonding on 2, 4, 6-substituted pyrimidine and its salt complex-experimental and theoretical evidence

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum molecular simulations of chemical systems can provide detailed information that is often inaccessible to direct experimental measurement. Pyrimidine is an interesting π-electron heterocyclic aromatic system which acts as the building block of many nucleic acid bases. The hydrogen bonds associated with the 2, 4, and 6-substituted pyrimidine and its hydrogen sulfate anion are considered for this current work. The experimental and computational evidence for the strength of these intra and intermolecular hydrogen are determined using vibrational spectra and quantum chemical calculations. Thus the effect of hydrogen bonding on the title compound is studied using its geometrical parameters, interaction energies, and vibrational spectra. Aromaticity and charge transfer studies have been performed to ascertain the aromatic behavior of the molecule. The PES scan studies have been done by varying the bond length to ascertain the protonation process of the compound. The IR spectral red shift (∼100 cm−1), blue shift (∼97 cm−1) and broadening of the polar stretching peaks shows the inter and intramolecular hydrogen bonding strength. Bond length alternation of proton donors along with the enormous interaction energies (∼0.5–150 kJ mol-1) between the lone pair and proton donors provides clear evidence for this hydrogen bonding. The charge transfer due to the methyl substitutions which enhances the possibility of hydrogen bonding has been discussed. The main scope of this work is to study the protonation and hydrogen bonding associated with charge transfer which has great effect on the 2-amino-4, 6-dimethyl pyrimidinium hydrogen sulfate (ADHS) molecule.

Effect and strength of Hydrogen bonding associated with title molecule

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gangjee Y, Jianminglu L, Roy HH, Kisliuk William S, Guilia JJ (2003) McGuire, design, synthesis, and biological activities of classical N-{4-[2-(2-amino-4-ethylpyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl}-l-glutamic acid and its 6-methyl derivative as potential dual inhibitors of thymidylate synthase and dihydrofolate reductase and as potential antitumor agents. J Med Chem 46:591–600. doi:10.1021/jm0203534

    Article  CAS  Google Scholar 

  2. Padhy AK, Bardhan MM, Panda CS (2003) Synthesis and anti-microbial activity of some pyrimidine derivatives. Indian J Chem B42:910–915

    Google Scholar 

  3. Naimi E, Zhou A, Khalili P, Wiebe LI, Balzarini J, De Clercq E, Knaus EE (2003) Synthesis of 3‘-and 5‘-nitrooxy pyrimidine nucleoside nitrate esters: “nitric oxide donor” agents for evaluation as anticancer and antiviral agents. J Med Chem 46:995–1004. doi:10.1021/jm020299r

    Article  CAS  Google Scholar 

  4. Herdewijn P, Balzarini J, Baba M, Pauwels R, Van Aerschot A, Janssen G, De Clercq E (1988) Synthesis and anti-HIV activity of different sugar-modified pyrimidine and purine nucleosides. J Med Chem 31:2040–2048. doi:10.1021/jm00118a033

    Article  CAS  Google Scholar 

  5. Shagidullin AR, Katsyuba SA, Avvakumova LV, Chernova AV, Mikhailov AS, Reznik VS (2011) Spectral study of the molecular structure of some 2-methylthio-6-methyl-4-alkyl-and alkylaminopyrimidines. Russ J Gen Chem 81:2164–2171. doi:10.1134/S1070363211100215

    Article  CAS  Google Scholar 

  6. Kumar Mahapatra A, Sahoo P, Goswami S, Fun H-K (2011) 2-amino-4-methylpyrimidine: a simple supramolecular scaffold for carboxylic acid complexes both in solid and solution states. J Lumin 131:59–68. doi:10.1016/j.jlumin.2010.08.031

    Article  CAS  Google Scholar 

  7. Ramiz MMM, El-Sayed WA, Hagag E, Abdel-Rahman AA-H (2011) Synthesis and antiviral activity of new substituted pyrimidine glycosides. J Heterocycl Chem 48:1028–1038. doi:10.1002/jhet.686

    Article  CAS  Google Scholar 

  8. Akyuz S (2002) The FT-IR spectroscopic investigation of two dimensional polymeric complexes of 2-aminopyrimidine. J Supramol Chem 2:401–404. doi:10.1016/S1472-7862(03)00065-0

    Article  CAS  Google Scholar 

  9. Wright AM, Joe LV, Howard AA, Tschumper GS, Hammer NI (2011) Spectroscopic and computational insight into weak noncovalent interactions in crystalline pyrimidine. Chem Phys Lett 501:319–323. doi:10.1016/j.cplett.2010.11.046

    Article  CAS  Google Scholar 

  10. Lomozik L, Gasowska A, Krzysko G, Bregier-Jarzebowska R (2010) Coordination reactions and noncovalent interactions of polyamines with nucleotides in binary systems and with nucleotides and copper(II) ion in ternary systems. Bioinorg Chem Appl 2010:740435. doi:10.1155/2010/740435

    Article  CAS  Google Scholar 

  11. Molyneux P (2012) Thermodynamics of noncovalent interactions in hydrophobically-substituted water-soluble polymers from intrinsic viscosity measurements: application to nucleobase-substituted pullulans. J Appl Polym Sci 123:657–671. doi:10.1002/app.34480

    Article  CAS  Google Scholar 

  12. Zhang J-P, Jin L, Zhang H-X, Bai F-Q (2011) Theoretical studies on structures and spectroscopic properties of highly efficient phosphorescent iridium (III) complexes with pyrazine and pyrimidine ligands. Synth Met 161:2492–2497. doi:10.1016/j.synthmet.2011.09.039

    Article  CAS  Google Scholar 

  13. Michalik S, Machura B, Kruszynski R, Kusz J, Krompiec M (2010) Synthesis, spectroscopic investigation, structural characterization and DFT calculation of the complexes [ReX2(N2COPh)(4-PhPyr)(PPh3)2] (X = Cl, Br). Polyhedron 29:2629–2636. doi:10.1016/j.poly.2010.06.015

    Article  CAS  Google Scholar 

  14. Akalin E, Akyuz S (2010) FT-IR and Raman spectroscopic and DFT theoretical investigations on Zn(II) halide complexes of 2-aminopyrimidine. Vib Spectrosc 53:140–145. doi:10.1016/j.vibspec.2010.01.010

    Article  CAS  Google Scholar 

  15. Szydłowska IF, Nowacki J, Herbich J (2010) Structural changes accompanying excited-state electron transfer in meta-and para-dialkylaminopyridines. J Photochem Photobiol A209:135–146. doi:10.1016/j.jphotochem.2009.11.006

    Article  CAS  Google Scholar 

  16. Li H, Zhang L, Han L, Sun W, Bu Y (2011) Internucleotide J-couplings and chemical shifts of the N−H · · · N hydrogen-bonds in the radiation-damaged guanine-cytosine base pairs. J Comput Chem 32:1159–1169. doi:10.1002/jcc.21699

    Article  CAS  Google Scholar 

  17. Sączewski J, Gdaniec M (2010) Synthesis of heterocycles by intramolecular nucleophilic substitution at an electron-deficient sp2 nitrogen atom. Eur J Org Chem 12:2387–2394

    Article  CAS  Google Scholar 

  18. Coleman Howard J, Hammer NI, Tschumper GS (2011) Structures, energetics and vibrational frequency shifts of hydrated pyrimidine. Chem Phys Chem 12:3262–3273. doi:10.1002/cphc.201100457

    Article  CAS  Google Scholar 

  19. Alonso M, Miranda C, Martin N, Herradon B (2011) Chemical applications of neural networks: aromaticity of pyrimidine derivatives. Phys Chem Chem Phys 13:20564–20574. doi:10.1039/C1CP22001B

    Article  CAS  Google Scholar 

  20. Li Y, Liu S, Zhao X, Chen M, Ma F (2008) Intramolecular charge transfer in the dye molecules containing bis-dimethylfluoreneaniline. J Mol Struct Theochem 867:10–16. doi:10.1016/j.theochem.2008.07.028

    Article  CAS  Google Scholar 

  21. Dash N, Chipem FAS, Krishnamoorthy G (2009) Encapsulation of 2-(4′-N, N-dimethylamino) phenylimidazo [4, 5-b] pyridinein β-cyclodextrin: effect on H-bond-induced intramolecular charge transfer emission. Photochem Photobiol Sci 8:1708–1715. doi:10.1039/B9PP00023B

    Article  CAS  Google Scholar 

  22. Perepichka DF, Perepichka IF, Moore AJ, Bryce MR, Batsanov AS (2008) Combining high electron affinity and intramolecular charge transfer in 1,3-dithiole–nitrofluorene push–pull diads. Chem Eur J 14:2757–2770. doi:10.1002/chem.200701459

    Article  CAS  Google Scholar 

  23. Hemamalini M, Muthiah PT, Rychlewska U, Plutecka A (2005) Hydrogen-bonding patterns in 2-amino-4, 6-dimethylpyrimidinium hydrogen sulfate. Acta Crystallogr C 61:o95–o97. doi:10.1107/S0108270104030975

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian, Inc, Wallingford

    Google Scholar 

  25. Krygowski TM, Cyranski M (1996) Separation of the energetic and geometric contributions to the aromaticity. Part IV. A general model for the π-electron systems. Tetrahedron 52:10255–10264. doi:10.1016/0040-4020(96)00560-1

    Article  CAS  Google Scholar 

  26. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1, TCI. University of Wisconsin, Madison

    Google Scholar 

  27. Sundius T (1990) Molvib - A flexible program for force field calculations. J Mol Struct 218:321–326. doi:10.1016/0022-2860(90)80287-T

    Article  CAS  Google Scholar 

  28. Sundius T (2002) Scaling of ab initio force fields by MOLVIB. Vib Spectrosc 29:89–95. doi:10.1016/S0924-2031(01)00189-8

    Article  CAS  Google Scholar 

  29. Wheatley PJ (1960) The crystal and molecular structure of pyrimidine. Acta Crystallogr 13:80–85. doi:10.1107/S0365110X60000200

    Article  CAS  Google Scholar 

  30. Peral F, Gallego E (1995) Self-association of pyrimidine and some of its methyl derivatives in aqueous solution. J Mol Struct 372:101–112. doi:10.1016/0022-2860(95)08991-8

    Article  CAS  Google Scholar 

  31. Haynes DA, Chisholm JA, Jones W, Samuel Motherwell WD (2004) Supramolecular synthon competition in organic sulfonates: a CSD survey. Cryst Eng Comm 6:584–588. doi:10.1039/B413797C

    Article  CAS  Google Scholar 

  32. Lide DR (2009) Handbook of chemistry and physics, 89th edn. (Internet version 2009). Taylor & Francis, Boca Raton

  33. Lyubov L, Pascard C (1996) Statistical analysis of noncovalent interactions of anion groups in crystal structures. I. Hydrogen bonding of sulfate anions. Acta Crystallogr B 52:677–684. doi:10.1107/S0108768196003035

    Article  Google Scholar 

  34. Fonseca Guerra C, Matthias Bickelhaupt F, Snijders JG, Baerends EJ (2000) Hydrogen bonding in DNA base pairs: reconciliation of theory and experiment. J Am Chem Soc 122:4117–4128. doi:10.1021/ja993262d

    Article  CAS  Google Scholar 

  35. Srivastava A, Mishra S, Tandon P, Patel S, Ayala AP, Bansal AK, Siesler HW (2010) Molecular structure and vibrational spectroscopic analysis of an antiplatelet drug; clopidogrel hydrogen sulphate (form 2) – A combined experimental and quantum chemical approach. J Mol Struct 964:88–96. doi:10.1016/j.molstruc.2009.11.016

    Article  CAS  Google Scholar 

  36. Thilagavathi G, Arivazhagan M (2011) Density functional theory calculation and vibrational spectroscopy study of 2-amino-4,6-dimethyl pyrimidine (ADMP). Spectrochim Acta A 79:389–395. doi:10.1016/j.saa.2011.01.052

    Article  CAS  Google Scholar 

  37. Hobza P, Spirko V (2003) Why is the N1–H stretch vibration frequency of guanine shifted upon dimerization to the red and the amino N–H stretch vibration frequency to the blue? Phys Chem Chem Phys 5:1290–1294. doi:10.1039/B210223D

    Article  CAS  Google Scholar 

  38. Ahmad S, Sharma SD, Isaq M (1996) Vibrational spectral studies of 2-amino-4,6-dimethyl- and 4-amino-2,6-dimethylpyrimidines. Spectrochim Acta A 52:1369–1373. doi:10.1016/0584-8539(96)01679-0

    Article  Google Scholar 

  39. Inagaki S, Murai H, Takeuchi T (2012) Theory of electron localization and its application to blue-shiftinghydrogen bonds. Phys Chem Chem Phys 14:2008–2014. doi:10.1039/C2CP23047J

    Article  CAS  Google Scholar 

  40. Wang H, Huang Z, Shen T, Guo L (2012) Hydrogen-bonding interactions in adrenaline–water complexes: DFT and QTAIM studies of structures, properties, and topologies. J Mol Model 18:3113–3123. doi:10.1007/s00894-011-1325-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Chellapan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillai, C.N., Chellapan, J. Effect of protonation and hydrogen bonding on 2, 4, 6-substituted pyrimidine and its salt complex-experimental and theoretical evidence. J Mol Model 20, 2139 (2014). https://doi.org/10.1007/s00894-014-2139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2139-2

Keywords

Navigation