Skip to main content
Log in

Theoretical study of the ring expansion reaction mechanism of cyclopropenylidene with azetidine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism for the ring expansion reaction between cyclopropenylidene and azetidine was systematically investigated employing second-order Møller–Plesset perturbation theory (MP2) in order to better understand the reactivity of cyclopropenylidene with the four-membered ring compound azetidine. Geometry optimizations and vibrational analyses were performed for the stationary points on the potential energy surfaces of the system. The results of our calculations show that cyclopropenylidene can insert into azetidine at its C–N or C–C bond. From a kinetic viewpoint, it is easier for cyclopropenylidene to insert into the C–N bond of azetidine than into the C–C bond. During the first insertion step and the second ring-opening step, it forms spiro and carbene intermediates, respectively. In the following two H-transfer steps, the carbene intermediate forms allenes and alkynes, respectively, as products. From a thermodynamic perspective, allenes are the dominant product because the reaction is exothermic by 373.4 kJ/mol−1.

Four pathways for the ring expansion reaction between cyclopropenylidene and azetidine were investigated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herges R, Mebel A (1994) Propargylene. J Am Chem Soc 116:8229–8237

    Article  CAS  Google Scholar 

  2. Maier G, Reisenauer HP, Schwab W, Carsky P, Hess BA, Schaad LJ (1987) Vinylidenecarbene: a new C3H2 species. J Am Chem Soc 109:5183–5188

    Article  CAS  Google Scholar 

  3. Seburg RA, DePinto JT, Patterson EV, McMahon RJ (1995) Structure of triplet propynylidene. J Am Chem Soc 117:835–836

    Article  CAS  Google Scholar 

  4. MacAllister T, Nicholson A (1981) C3H3 + in flames and the proton affinity of C3H2. J Chem Soc Faraday Trans 1(77):821–825

    Article  Google Scholar 

  5. Winnewisser G, Mezger PG, Breuer HD (1974) Interstellar molecules. Top Curr Chem 44:1–81

    CAS  Google Scholar 

  6. Kawaguchi K, Kaifu N, Ohishi M, Ishikawa SI, Hirahara Y, Yamamoto S (1991) Observations of cumulene carbenes, H2CCCC and H2CCC, in TMC-1. Publ Astron Soc Jpn 43:607–619

    CAS  Google Scholar 

  7. Patrick T, Carl AG, Reza M, Jan MV (1993) Free carbenes in the interstellar gas. J Chem Soc Faraday Trans 89:2125–2129

    Article  Google Scholar 

  8. Vrtilek JM, Gottlieb CA, Thaddeus P (1987) Laboratory and astronomical spectroscopy of C3H2, the first interstellar organic ring. Astrophys J 314:716–720

    Article  CAS  Google Scholar 

  9. Madden SC, Irvine WM, Mathews HE, Friberg P, Swade DA (1989) A survey of cyclopropenylidene (C3H2) in galactic sources. Astron J 97:1403–1422

    Article  CAS  Google Scholar 

  10. Oike T, Kawaguchi K, Takano S, Nakai NP (2004) Observations of cyclopropenylidene (cyclic-C3H2) in the external galaxies NGC253 and M82. Astron Soc Jpn 56:431–438

    Google Scholar 

  11. Seburg RA, Patterson EV, Stanton JF, McMahon RJ (1997) Structures, automerizations, and isomerizations of C3H2 isomers. J Am Chem Soc 119:5847–5856

    Article  CAS  Google Scholar 

  12. Juana V, Michael EH, Jurgen G, John FS (2009) High-accuracy extrapolated ab initio thermochemistry of the propargyl radical and the singlet C3H2 carbenes. J Phys Chem A 113:12447–12453

    Google Scholar 

  13. Taatjes CA, Klippenstein SJ, Hansen N, Miller JA, Cool TA, Wang J, Law ME, Westmoreland PR (2005) Synchrotron photoionization measurements of combustion intermediates: photoionization efficiency and identification of C3H2 isomers. Phys Chem Chem Phys 7:806–813

    Article  CAS  Google Scholar 

  14. Lau KC, Ng CY (2006) Accurate ab initio predictions of ionization energies and heats of formation for cyclopropenylidene, propargylene and propadienylidene. Chin J Chem Phys 19:29–38

    Google Scholar 

  15. Varadwaj PR, Fujimori R, Kawaguchi K (2011) High-resolution Fourier transform infrared absorption spectroscopy of the ν6 band of c-C3H2. J Phys Chem A 115:8458–8463

    Article  CAS  Google Scholar 

  16. Patrick H, Juliane K, Ingo F, Giovanni P, Lionel P, Jean-Michel M (2012) Femtosecond dynamics of cyclopropenylidene, c-C3H2. Phys Chem Chem Phys 14:6173–6178

    Article  CAS  Google Scholar 

  17. Hemberger P, Noller B, Steinbauer M, Fischer I, Alcaraz C (2010) Threshold photoelectron spectroscopy of cyclopropenylidene, chlorocyclopropenylidene, and their deuterated isotopomeres. J Phys Chem A 114:11269–11276

    Article  CAS  Google Scholar 

  18. Jones M, Moss RA (1973) Carbenes. Wiley, New York

    Google Scholar 

  19. Sadao M, Toshinobu O, Hideaki I, Yasuji M, Zen-Ichi Y (1988) Catalysis of cyclopropenylidene palladium (II) complexes for the isomerization of quadricyclane to norbornadiene. Tetrahedron 44:55–60

    Article  Google Scholar 

  20. Michael SM, John PS (1995) A cyclopropenylidene approach to tricarbide complexes: synthesis and structure of [{Fe(CO)2(Cp)}3(mu3-C3)][SbF6]. J Am Chem Soc 117:7005–7006

    Article  Google Scholar 

  21. Glenn K, Bruno D, Guy B (2008) Stable bis(diisopropylamino)-cyclopropenylidene (BAC) as ligand for transition metal complexes. J Organomet Chem 693:899–904

    Google Scholar 

  22. Vincent L, Yves C, Bruno D, Wolfgang WS, Guy B (2006) Cyclopropenylidenes: from interstellar space to an isolated derivative in the laboratory. Science 312:722–724

    Article  CAS  Google Scholar 

  23. Mohajeri A, Jenabi MJ (2007) Singlet and triplet potential energy surfaces of C3H2. J Mol Struct THEOCHEM 820:65–73

    Article  CAS  Google Scholar 

  24. Ochsenfeld C, Kaiser R, Lee YT, Suits AG, Head-Gordon M (1987) A coupled-cluster ab initio study of triplet C3H2 and the neutral–neutral reaction to interstellar C3H. J Chem Phys 106:4141–4151

    Article  Google Scholar 

  25. Hehre WJ, Pople JA, Lathan WA, Radom L, Wasserman E, Wasserman ZR (1976) Molecular orbital theory of the electronic structure of organic compounds. 28. Geometries and energies of singlet and triplet states of the C3H2 hydrocarbons. J Am Chem Soc 98:4378–4383

    Article  CAS  Google Scholar 

  26. Lee TJ, Bunge A, Schaefer HF (1985) Toward the laboratory identification of cyclopropenylidene. J Am Chem Soc 107:137–142

    Article  CAS  Google Scholar 

  27. Hiroyuki K, Satoshi Y, Shuji S (1987) Microwave spectroscopic determination of the dipole moment of cyclopropenylidene, C3H2. Chem Phys Lett 140:221–224

    Article  Google Scholar 

  28. Talbi D, Pauzat F (1995) Deuteration effects on the IR spectra of C3H2. Chem Phys Lett 244:269–274

    Article  CAS  Google Scholar 

  29. Gerin M, Wootten HA, Combes F, Boulanger F, Peters WL (1987) Deuterated C3H2 as a clue to deuterium chemistry. Astron Astrophys 173:L1–L4

    CAS  Google Scholar 

  30. Margules L, Demaison J, Boggs JE (2000) The equilibrium CC bond length. Struct Chem 11:145–154

    Article  CAS  Google Scholar 

  31. Varadwaj PR, Varadwaj A, Peslherbe GH (2012) An electronic structure theory investigation of the physical chemistry of the intermolecular complexes of cyclopropenylidene with hydrogen halides. J Comput Chem 33:2073–2082

    Article  CAS  Google Scholar 

  32. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 (revision E.01). Gaussian, Inc., Wallingford

  34. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, London

    Google Scholar 

  35. Markus R, Ralf T, Gernot F (2010) P-heterocyclic carbenes as effective catalysts for the activation of single and multiple bonds. A theoretical study. New J Chem 34:1760–1773

    Google Scholar 

  36. Nantermet PG, Rajapakse HA, Selnick HG, Stauffer SR, Young MB (2005) Preparation of benzyl ethers, benzylamines, pyridylmethyl ethers, and pyridylmethylamines as β-secretase inhibitors for the treatment of Alzheimer’s disease. PCT Int Appl WO 2005051914

  37. Bialy L, Lorenz K, Wirth K, Steinmeyer K, Hessler G (2013) Preparation of fused pyrroledicarboxamides and their use as TASK-1 inhibitors for therapy. PCT Int Appl WO 2013113860

  38. Bookser BC, Dang Q, Gibson TS, Jiang H, Chung DM, Bao J, Jiang J, Kassick A, Kekec A, Lan P (2010) Preparation of cyclic benzimidazole derivatives as activators of AMP-protein kinase useful anti-diabetic agents. PCT Int Appl WO 2010036613

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) (21003082, 21303093), the Project of Shandong Province Higher Educational Science and Technology Program (J13LM06), and the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2013-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Tan, Qiao Sun or Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Wang, W., Sun, Q. et al. Theoretical study of the ring expansion reaction mechanism of cyclopropenylidene with azetidine. J Mol Model 20, 2088 (2014). https://doi.org/10.1007/s00894-014-2088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2088-9

Keywords

Navigation