Skip to main content
Log in

Structural elucidation of supramolecular alpha-cyclodextrin dimer/aliphatic monofunctional molecules complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structural elucidation of 2α-cyclodextrin/1-octanethiol, 2α-cyclodextrin/1-octylamine and 2α-cyclodextrin/1-nonanoic acid inclusion complexes by nuclear magnetic resonance (NMR) spectroscopy and molecular modeling has been achieved. The detailed spatial configurations are proposed for the three inclusion complexes based on 2D NMR method. ROESY experiments confirm the inclusion of guest molecules inside the α-cyclodextrin (α-CD) cavity. On the other hand, the host-guest ratio observed was 2:1 for three complexes. The detailed spatial configuration proposed based on 2D NMR methods were further interpreted using molecular modeling studies. The theoretical calculations are in good agreement with the experimental data.

Supramolecular alpha-cyclodextrin dimer/aliphatic monofunctional molecules complexes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wassel R, Credo G, Fuierer R, Feldheim D, Gorman C (2004) Attenuating negative differential resistance in an electroactive self-assembled monolayer-based junction. J Am Chem Soc 126:295–300

    Article  CAS  Google Scholar 

  2. Villalonga R, Cao R, Fragoso A (2007) Supramolecular chemistry of cyclodextrins in enzyme technology. Chem Rev 107:3088–3116

    Article  CAS  Google Scholar 

  3. Barrientos L, Yutronic N, Del Monte F, Gutiérrez MC, Jara P (2007) Ordered arrangement of gold nanoparticles on an α-cyclodextrin-dodecanethiol inclusion compound produced by magnetron sputtering. New J Chem 31:1400–1402

    Article  CAS  Google Scholar 

  4. Zhang J, Ma P (2010) Host-guest interaction mediated nano assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. NanoToday 5:337–350

    Article  CAS  Google Scholar 

  5. D’souza R, Pischel U, Nau W (2011) Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev 111:7941–7980

    Article  Google Scholar 

  6. Wenz G, Han B, Muller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817

    Article  CAS  Google Scholar 

  7. Miyake K, Yasuda S, Harada A, Sumaoka J, Komiyama M, Shigekawa H (2003) Formation process of cyclodextrin necklace-analysis of hydrogen bonding on a molecular level. J Am Chem Soc 125:5080–5085

    Article  CAS  Google Scholar 

  8. Schmider J, Fritsch G, Haisch T, Muller K (2001) Solid state 2H NMR studies of n-alkanes confined in solid matrices. Mol Cryst Liq Cryst 356:99–101

    Article  CAS  Google Scholar 

  9. McMullan RK, Saenger W, Fayos J, Mootz D (1973) Topography of cyclodextrin inclusion complexes: part I. Classification of crystallographic data of α-cyclodextrin inclusion complexes. Carbohydr Res 31:37–46

    Article  CAS  Google Scholar 

  10. Jara P, Justiniani M, Yutronic N, Sobrados I (1998) Syntheses and structural aspects of cyclodextrin/dialkylamine inclusion compounds. J Incl Phenom Mol Recognit Chem 32:1–8

    Article  CAS  Google Scholar 

  11. Takeo K, Kuge T (1970) On the inclusion compounds of cyclodextrins with diethylether. Agric Biol Chem 34:1787–1794

    Article  CAS  Google Scholar 

  12. Chernykh E, Brichkin S (2010) Supramolecular complexes based on cyclodextrins. High Energy Chem 44:83

    Article  CAS  Google Scholar 

  13. Mc Dermott S, Rooney D, Breslin C (2012) Complexation study and spectrofluorometric determination of the binding constant for diquat and p-sulfonatocalix[4]arene. Tetrahedron 68:3815–3821

    Article  CAS  Google Scholar 

  14. Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266

    Article  CAS  Google Scholar 

  15. Ghasemi J, Salahinejad M, Rofouei M (2011) Review of the quantitative structure-activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramol Chem 23:615–631

    Article  CAS  Google Scholar 

  16. Schneider HJ, Hacket F, Rudiger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1786

    Article  CAS  Google Scholar 

  17. Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1357

    Article  CAS  Google Scholar 

  18. Fielding L (2000) Determination of association constants (Ka) from solution NMR data. Tetrahedron 56:6151–6170

    Article  CAS  Google Scholar 

  19. Ghosh B, Deb N, Mukherjee A (2010) Determination of individual proton affinities of ofloxacin from its UV-Vis absorption, fluorescence and charge-transfer spectra: effect of inclusion in β-cyclodextrin on the proton affinities. J Phys Chem B 114:9862–9871

    Article  CAS  Google Scholar 

  20. Jara P, Barrientos L, Herrera B, Sobrados I (2008) Inclusion compounds of a-cyclodextrin with alkylthiols. J Chil Chem Soc 53:1474–1476

    Article  CAS  Google Scholar 

  21. Kokkinou A, Tsorteki F, Karpusas M, Papakyriakou A, Bethanis K, Mentzafos D (2010) Study of the inclusion of the (R)- and (S)-camphor enantiomers in a-cyclodextrin by X-ray crystallography and molecular dynamics. Carbohydr Res 345:1034–1040

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb, MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Cliford S, Ochterski J, Petersson G A, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham M A, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson, BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle, ES Pople (1998) JA Gaussian 98 (revision a.7), Gaussian, Inc., Pittsburg, PA

  23. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  24. Chankvetadze B, Schulte G, Bergenthal D, Blaschke G (1998) Comparative capillary electrophoresis and NMR studies of enantio separation of dimethindene with cyclodextrines. J Chromatogr A 798:315–323

    Article  CAS  Google Scholar 

  25. Neuhaus D, Williamson MP (2000) The nuclear Overhauser effect in structural and conformational analysis. Wiley-VCH, Chichester

    Google Scholar 

Download references

Acknowledgments

This research was possible thanks to financial support of Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), grants Nos. 11110138, 1090029, 1080505. L.B.P wants to thanks Basal Financing Program CONICYT, FB0807 (CEDENNA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Barrientos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrientos, L., Lang, E., Zapata-Torres, G. et al. Structural elucidation of supramolecular alpha-cyclodextrin dimer/aliphatic monofunctional molecules complexes. J Mol Model 19, 2119–2126 (2013). https://doi.org/10.1007/s00894-012-1675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1675-x

Keywords

Navigation