Skip to main content
Log in

Simple benzene derivatives adsorption on defective single-walled carbon nanotubes: a first-principles van der Waals density functional study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have investigated the interaction between open-ended zig-zag single-walled carbon nanotube (SWCNT) and a few benzene derivatives using the first-principles van der Waals density functional (vdW-DF) method, involving full geometry optimization. Such sp 2-like materials are typically investigated using conventional DFT methods, which significantly underestimate non-local dispersion forces (vdW interactions), therefore affecting interactions between respected molecules. Here, we considered the vdW forces for the interacting molecules that originate from the interacting π electrons of the two systems. The −0.54 eV adsorption energy reveals that the interaction of benzene with the side wall of the SWCNT is typical of the strong physisorption and comparable with the experimental value for benzene adsorption onto the graphene sheet. It was found that aromatics are physisorbed on the sidewall of perfect SWCNTs, as well as at the edge site of the defective nanotube. Analysis of the electronic structures shows that no orbital hybridization between aromatics and nanotubes occurs in the adsorption process. The results are relevant in order to identify the potential applications of noncovalent functionalized systems.

First-principles van der Waals density functional (vdW-DF) calculations show that aromatics are physisorbed on the side wall of perfect single-walled carbon nanotubes (SWCNTs) as well as at the edge site of defective nanotubes 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dresselhaus MS, Dresselhaus G, Avouris P (2000) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin

    Google Scholar 

  2. Chen RJ, Zhang Y, Wang D, Dai HJ (2001) J Am Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  3. Wang X, Liu Y, Qiu W, Zhu D (2002) J Mater Chem 12:1636–1639

    Article  CAS  Google Scholar 

  4. Collins PG, Bradley K, Ishigami M, Zettl Z (2000) Science 287:1801–1804

    Article  CAS  Google Scholar 

  5. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Hebe MJ (1997) Nature (London) 386:377–379

    Article  CAS  Google Scholar 

  6. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K et al (2000) Science 287:622–625

    Article  CAS  Google Scholar 

  7. Sumanasekera GU, Pradhan BK, Romero HE, Adu KW, Eklund PC (2002) Phys Rev Lett 89:166801–166804

    Article  CAS  Google Scholar 

  8. Star A, Han TR, Gabriel JCP, Bradley K, Gruener G (2003) Nano Lett 3:1421–1423

    Article  CAS  Google Scholar 

  9. Snow ES, Perkins FK, Houser EJ, Bădescu ŞC, Reinecke TL (2005) Science 307:1942–1945

    Article  CAS  Google Scholar 

  10. Park H, Zhao J, Lu JP (2006) Nano Lett 6:916–919

    Article  CAS  Google Scholar 

  11. Penza M, Antolini F, Antisari MV (2004) Sens Actuators B 100:47–59

    Article  Google Scholar 

  12. Zhao X, Johnson JK (2007) J Am Chem Soc 129(34):10438–10445

    Article  CAS  Google Scholar 

  13. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD (2005) J Am Chem Soc 127:4388–4396

    Article  CAS  Google Scholar 

  14. Zhang L, Kiny VU, Peng HQ, Zhu J, Lobo RFM, Margrave JL (2004) J Mater Chem 16:2055–2061

    Article  CAS  Google Scholar 

  15. Gao H, Annu Y (2004) Rev Mater Res 34:123–150

    Article  CAS  Google Scholar 

  16. Moghaddam MJ, Taylor S, Gao M, Huang S, Dai L, McCall MJ (2004) Nano Lett 4:89–93

    Article  CAS  Google Scholar 

  17. Joselevich E (2004) Chem Phys Chem 5:619–624

    Article  CAS  Google Scholar 

  18. Tournus F, Charlier JC (2005) Phys Rev B 71:165421

    Article  Google Scholar 

  19. Woods LM, Bădescu ŞC, Reinecke TL (2007) Phys Rev B 75:155415(1)–155415(9)

    Article  Google Scholar 

  20. Xu YJ, Li JQ (2005) Chem Phys Lett 412:439

    Article  CAS  Google Scholar 

  21. Stan G, Cole MW (1998) Surf Sci 395:280–291

    Article  CAS  Google Scholar 

  22. Yoo DH, Rue GH, Hwang YH, Kim HK (2002) J Phys Chem B 106:3371–3374

    Article  CAS  Google Scholar 

  23. Tang ZR (2010) Physica B 405:770–773

    Article  CAS  Google Scholar 

  24. Ganji MD, Goodarzi M, Nashtahosseini M, Mommadi-nejad A (2011) Commun Theor Phys 55:365

    Article  CAS  Google Scholar 

  25. Wuesta JD, Rochefort A (2010) Chem Commun 46:2923

    Article  Google Scholar 

  26. Li G, Tamblyn I, Cooper VR, Gao H-J, Neaton JB (2012) Phys Rev B 85:121409

    Article  Google Scholar 

  27. Klime J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131

    Article  Google Scholar 

  28. Cooper VR (2010) Phys Rev B 81:161104(R)

    Article  Google Scholar 

  29. Dell’Angela M, Kladnik G, Cossaro A, Verdini A, Kamenetska M, Tamblyn I, Quek SY, Neaton JB, Cvetko D, Morgante A, Venkataraman L (2010) Nano Lett 10:2470

    Article  Google Scholar 

  30. Mura M, Gulans A, Thonhauser T, Kantorovich L (2010) Phys Chem Chem Phys 12:4759

    Article  CAS  Google Scholar 

  31. Carter DJ, Rohl AL (2012) J Chem Theory Comput 8:281

    Article  CAS  Google Scholar 

  32. Xu YJ, Li JQ (2004) Chem Phys Lett 400:406

    Article  CAS  Google Scholar 

  33. Xu X, Nakatsuji H, Lu X, Ehara M, Cai Y, Wang N (1999) Theor Chem Acc 172:170

    Article  Google Scholar 

  34. Basiuk VA (2003) J Phys Chem B 107:8890

    Article  CAS  Google Scholar 

  35. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  36. Kohn W, Sham LJ (1965) Phys Rev B 140:A1133

    Article  Google Scholar 

  37. Charlier JC, Gonze X, Michenaud JP (1994) Europhys Lett 28:403

    Article  CAS  Google Scholar 

  38. Girifalco LA, Hodak M (2002) Phys Rev B 65:125404

    Article  Google Scholar 

  39. Gulans A, Puska MJ, Nieminen RM (2009) Phys Rev B 79:201105

    Article  Google Scholar 

  40. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  42. Zacharia R, Ulbricht H, Hertel T (2004) Phys Rev B 69:155406

    Article  Google Scholar 

  43. Sánchez-Portal D, Ordejón P, Artacho E, Soler JM (1997) Int J Quantum Chem 65:453

    Article  Google Scholar 

  44. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  45. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425

    Article  CAS  Google Scholar 

  46. Sánchez-Portal D, Artacho E, Soler JM (1996) J Phys Condens Matter 8:3859

    Article  Google Scholar 

  47. Baskin Y, Meyer L (1955) Phys Rev 100:544

    Article  CAS  Google Scholar 

  48. Ganji MD (2008) Nanotechnology 19:025709

    Article  CAS  Google Scholar 

  49. Ganji MD (2008) Phys Lett A 372:3277–3282

    Article  CAS  Google Scholar 

  50. Ganji MD (2009) Physica E 41:1433–1438

    Article  CAS  Google Scholar 

  51. Ganji MD (2009) Diamond Related Mater 18:662–668

    Article  CAS  Google Scholar 

  52. Ganji MD, Tajbakhsh M, Laffafchi M (2010) Sol State Sci 12:1547–1553

    Article  CAS  Google Scholar 

  53. Ganji MD, Mirnejad A, Najafi A (2010) Sci Technol Adv Mater 11:045001. doi: 10.1088/1468-6996/11/4/045001

    Article  Google Scholar 

  54. Ganji MD, Abbaszadeh B, Ahaz B (2011) Physica E 44:290–297

    Article  CAS  Google Scholar 

  55. Kolmogorov AN, Crespi VH (2005) Phys Rev B 71:235415

    Article  Google Scholar 

  56. Irving DL, Sinnott SB, Lindner AS (2004) Chem Phys Lett 389:96–100

    Article  CAS  Google Scholar 

  57. Ozaki T, Kino H, Yu J, Han MJ, Kobayashi N, Ohfuti M et al (2011) The code, OpenMX, pseudo-atomic basis functions, and pseudopotentials are available on a web site is http://www.openmx-square.org/

Download references

Acknowledgment

The authors gratefully acknowledge the support of this work by the Azad University of Qaemshahr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Darvish Ganji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganji, M.D., Mohseni, M. & Bakhshandeh, A. Simple benzene derivatives adsorption on defective single-walled carbon nanotubes: a first-principles van der Waals density functional study. J Mol Model 19, 1059–1067 (2013). https://doi.org/10.1007/s00894-012-1652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1652-4

Keywords

Navigation