Skip to main content
Log in

Direct ab initio study on the rate constants of radical C2(A3Πu) + C3H8 reaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism and kinetics of the radical 3C2 + C3H8 reaction have been investigated theoretically by direct ab initio kinetics over a wide temperature range. The potential energy surfaces have been constructed at the CCSD(T)/B3//UMP2/B1 levels of theory. The electron transfer was also analyzed by quasi–restricted orbital (QRO) in detail. It was shown that all these channels proceed exclusively via hydrogen abstraction. The overall ICVT/SCT rate constants are in agreement with the available experimental results. The prediction shows that the secondary hydrogen of C3H8 abstraction by 3C2 radical is the major pathway at low temperatures (below 700 K), while as the temperature increases, the primary hydrogen of C3H8 abstraction becomes more important and more favorable. A negative temperature dependence of the rate constants for the reaction of 3C2 + C3H8 was observed. The three–(k 3) and four–parameter (k 4) rate-temperature expressions were also provided within 243–2000 K to facilitate future experimental studies.

Three types of hydrogen abstraction from C3H8 by 3C2 radical have been considered. The prediction shows that the secondary hydrogen of C3H8 abstraction by 3C2 radical is the major pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kruse T, Roth P (1999) Int J Chem Kinet 31:11–21

    Article  CAS  Google Scholar 

  2. Mckellar AR (1960) J Astron Soc Can 54:97

    CAS  Google Scholar 

  3. Lambert DLM (1974) Bull Astron Inst Czech 25:216

    CAS  Google Scholar 

  4. Chaffee FH Jr, Lutz BL, Black JH, Vanden Bout PA, Snell RL (1980) Astrophys J 236:474

    Article  CAS  Google Scholar 

  5. Danks AC, Lambert DL (1983) Astrophysics 124:188

    CAS  Google Scholar 

  6. Huang C, Zhu Z, Wang H, Pei L, Chen Y (2005) J Phys Chem A 109:3921

    Article  CAS  Google Scholar 

  7. Huang C, Li Z, Zhao D, Xin Y, Pei L, Chen C, Chen Y (2004) Chin Sci Bull 49:438

    CAS  Google Scholar 

  8. Huang C, Zhu Z, Xin Y, Pei L, Chen C, Chen Y (2004) J Chem Phys 120:2225

    Article  CAS  Google Scholar 

  9. Donnelly VM, Pasternack L (1979) Chem Phys 39:427–432

    Article  CAS  Google Scholar 

  10. Reisler H, Mangir M, Wittig C (1979) J Chem Phys 71:2109–2117

    Article  CAS  Google Scholar 

  11. Reisler H, Mangir M, Wittig C (1980) Chemical Physics 47:49–58

    Article  CAS  Google Scholar 

  12. Pasternack L, Baronavski AP, McDonald JR (1980) J Chem Phys 73:3508–3510

    Article  CAS  Google Scholar 

  13. Ballik EA, Ramsay DA (1959) J Chem Phys 31:1

    Article  Google Scholar 

  14. Mangir MS, Reisler H, Wittig C (1980) J Chem Phys 73:829–835

    Article  CAS  Google Scholar 

  15. Reisler H, Mangir MS, Wittig C (1980) J Chem Phys 73:2280–2286

    Article  CAS  Google Scholar 

  16. Pasternack L, Pitts WM, McDonald JR (1981) Chem Phys 57:19–28

    Article  CAS  Google Scholar 

  17. Pitts WM, Pasternack L, McDonald JR (1982) Chem Phys 68:417–422

    Article  CAS  Google Scholar 

  18. Skell PS, Jackman LM, Ahmed S, McKee ML, Shevlin PB (1989) J Am Chem Soc 111:4422–4429

    Article  CAS  Google Scholar 

  19. Gong M, Bao Y, Urdahl RS, Jackson WM (1994) Chem Phys Lett 217:210

    Article  CAS  Google Scholar 

  20. Maluendes SA, McLean AD, Herbst E (1994) Chem Phys Lett 217:571–576

    Article  CAS  Google Scholar 

  21. Horner DA, Curtiss LA, Gruen DM (1995) Chem Phys Lett 233:243–248

    Article  CAS  Google Scholar 

  22. Blunt VM, Lin H, Sorkhabi O, Jackson WM (1996) Chem Phys Lett 257:347–350

    Article  CAS  Google Scholar 

  23. Huang C, Zhao D, Pei L, Chen C, Chen Y (2004) Chem Phys Lett 389:230–235

    Article  CAS  Google Scholar 

  24. Mebel AM, Kislov VV, Kaiser RI (2006) J Phys Chem A 110:2421–2433

    Article  CAS  Google Scholar 

  25. Paramo A, Canosa A, Le Picard SD, Sims IR (2006) J Phys Chem A 110:3121–3127

    Article  CAS  Google Scholar 

  26. Daugey N, Caubet P, Bergeat A, Costes M, Hickson KM (2008) Phys Chem Chem Phys 10:729–737

    Article  CAS  Google Scholar 

  27. Paramo A, Canosa A, Le Picard SD, Sims IR (2008) J Phys Chem A 112:9591–9600

    Article  CAS  Google Scholar 

  28. Hu R, Zhang Q, Chen Y (2010) J Chem Phys 132:164312–164317

    Article  Google Scholar 

  29. Canosa A, Paramo A, Le Picard SD, Sims IR (2007) Icarus 187:558

    Article  CAS  Google Scholar 

  30. Pasternack L, McDonald JR (1979) Chem Phys 43:173

    Article  CAS  Google Scholar 

  31. Huo RP, Huang XR, Li JL, Zhang X, Sun CC (2012) Int J Quantum Chem 112:1078–1085

    Article  CAS  Google Scholar 

  32. Li N, Huo RP, Zhang X, Huang XR, Li JL, Sun CC (2011) Chem Phys Lett 503:210–214

    Article  CAS  Google Scholar 

  33. Huo RP, Zhang X, Huang XR, Li JL, Sun C C (2012) Mol Phys 1–13.

  34. Schlegel HB (1986) J Chem Phys 84:4530

    Article  CAS  Google Scholar 

  35. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  36. Scuseria GE, Schaefer HF (1989) J Chem Phys 90:4

    Google Scholar 

  37. Pople JA, Gordon MH, Raghavachari K (1989) J Chem Phys 87:8

    Google Scholar 

  38. Lee TJ, Taylor PR (1989) Int J Quant Chem Symp 23:199

    CAS  Google Scholar 

  39. Rienstra-Kiracofe JC, Allen WD, Schaefer HF (2000) J Phys Chem A 104:9823

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.02. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  41. Corchado J C, Chuang Y Y, Fast P L, HuW P, Liu Y P, Lynch G C, Nguyen K A, Jackels C F, Ramos A F, Ellingson B A, Lynch B J, Zheng J, Melissas V S, Villàa J, Rossi I, Coitino E L, P Jingzhi, Albu T V (2007) Department of Chemistry and Supercomputing Institute; University ofMinnesota: Minneapolis, MN, Version 9.7

  42. Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408

    Article  CAS  Google Scholar 

  43. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593

    Article  CAS  Google Scholar 

  44. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534

    Article  CAS  Google Scholar 

  45. Neese F (2006) J Am Chem Soc 128:10213

    Article  CAS  Google Scholar 

  46. Neese F. ORCA -an ab initio, density functional and semiempirical program package, Version 2.8, Bonn University.

  47. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605

    Article  CAS  Google Scholar 

  48. Hu WP, Rossi I, Corchado JC, Truhlar DG (1997) J Phys Chem A 101:6911

    Article  CAS  Google Scholar 

  49. Gray HB (1973) Chemical Bonds. Benjamin, Menlo Park,CA

    Google Scholar 

  50. Hellwege KH, Hellwege AM (Eds.) (1976) Landolt-Bornstein: group II: Atomic and molecular physics vol 7: structure data of free polyatomic molecules. Springer, Berlin

  51. Kuchitsu KE (1998) Structure of free polyatomic molecules - basic data. Springer, Berlin

    Book  Google Scholar 

  52. Li JL, Gen CY, Huang XR, Sun CC (2006) J Chem Theory Comput 2:1551

    Article  CAS  Google Scholar 

  53. Malick DKPGA, Montgomery JA (1998) J Chem Phys 108:5704

    Google Scholar 

  54. Huo RP, Zhang X, Huang XR, Li JL, Sun CC (2011) J Phys Chem A 115:3576–3582

    Article  CAS  Google Scholar 

  55. Zheng J, Truhlar DG (2010) Phys Chem Chem Phys 12:7782

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC No. 21073075), Research Fund for the Doctoral Program of Higher Education of China (RFDP No. 20100061110046), the Special Funding of State Key Laboratory of Theoretical and Computational Chemistry, Jilin University and Basic Research Fund of Jilin University (No. 421010061439, 450060445067) and Graduate Innovation Fund of Jilin University (No.20121036). The authors are thankful for the reviewers’ invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Lai Li.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 503 kb)

ESM 2

[INSERT CAPTION HERE] (DOC 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, RP., Zhang, X., Huang, XR. et al. Direct ab initio study on the rate constants of radical C2(A3Πu) + C3H8 reaction. J Mol Model 19, 1009–1018 (2013). https://doi.org/10.1007/s00894-012-1616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1616-8

Keywords

Navigation