Skip to main content
Log in

Density functional investigation of hydrogen gas adsorption on Fe−doped pristine and Stone−Wales defected single−walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorptions of hydrogen molecule of the Fe − doped pristine and Stone − Wales defected armchair (5,5) single − walled carbon nanotubes (SWCNTs) compared with the pristine SWCNT were investigated by using the density functional theory at the B3LYP/LanL2DZ level. The doping of Fe atom into SWCNTs occurring via an exothermic process was found. The adsorptions of hydrogen molecule on the Fe − doped structures of either perfect or SW defected SWCNTs are stronger than on their corresponding undoped structures. The structural and electronic properties of the pristine and SW defected SWCNTs, their Fe − doped structures and their hydrogen molecule adsorptions are reported.

The adsorptions of hydrogen molecule of the Fe−doped pristine and defected (5,5) single−walled carbon nanotubes (SWCNTs) compared with the pristine SWCNT were computed. The adsorptions of hydrogen molecule on the Fe−doped structures of either perfect or defected SWCNTs are stronger than on their corresponding undoped structures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Nature 363:603–605

    Article  CAS  Google Scholar 

  3. Darkrim FL, Malbrunota P, Tartaglia GP (2002) Int J Hydrog Energy 27:193–202

    Article  CAS  Google Scholar 

  4. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377–379

    Article  CAS  Google Scholar 

  5. Zhou LG, Shia SQ (2003) Carbon 41:579–625

    Article  Google Scholar 

  6. Zhuang HL, Zheng GP, Soh AK (2008) Comput Mater Sci 43:823–828

    Article  CAS  Google Scholar 

  7. Wang G, Huang Y (2008) J Phys Chem C 112:9128–9132

    Article  CAS  Google Scholar 

  8. Yang SH, Shin WH, Lee JW, Kim SY, Woo SI, Kang JK (2006) J Phys Chem B 110(28):13941–13946

    Article  CAS  Google Scholar 

  9. Khare BN, Meyyappan M, Cassell AM, Nguyen CV, Han J (2002) Nano Lett 2:73–77

    Article  CAS  Google Scholar 

  10. Zhang G, Qi P, Wang X, Lu Y, Mann D, Li X, Dai H (2006) J Am Chem Soc 128:6026–6027

    Article  CAS  Google Scholar 

  11. Sudan P, Züttel A, Mauron P, Emmenegger C, Wenger P, Schlapbach L (2003) Carbon 41:2377–2383

    Article  CAS  Google Scholar 

  12. Cabria I, López MJ, Alonso JA (2006) Comput Mater Sci 35:238–242

    Article  CAS  Google Scholar 

  13. Han SS, Lee HM (2004) Carbon 42:2169–2177

    Article  CAS  Google Scholar 

  14. Yang YX, Singh RK, Webley PA (2008) Adsorption 14:265–274

    Article  CAS  Google Scholar 

  15. Xiao H, Li SH, Cao JX (2009) Chem Phys Lett 483:111–114

    Article  CAS  Google Scholar 

  16. Liu B, Weia L, Dinga Q, Yao J (2005) J Cryst Growth 277:293–297

    Article  CAS  Google Scholar 

  17. Zhao X, Kadoya T, Ikeda T, Suzuki T, Inoue S (2007) Diamond Relat Mater 16:1101–1105

    Article  CAS  Google Scholar 

  18. Zhang ZW, Li JC, Jiang Q (2010) J Phys Chem C 114:7733–7737

    Article  CAS  Google Scholar 

  19. Horner DA, Redfern PC, Sternberg M, Zapol P, Curtiss LA (2007) Chem Phys Lett 450:71–75

    Article  CAS  Google Scholar 

  20. Bettinger HF (2005) J Phys Chem B 109:6922–6924

    Article  CAS  Google Scholar 

  21. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theor Comput 6:1351–1357

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  25. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  26. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  27. Frisch MJ et al. (2008) Gaussian03, Revision E.01. Gaussian Inc, Pittsburgh

    Google Scholar 

  28. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 9(5):839–845

    Article  Google Scholar 

  29. Marichev VA (2009) Colloids Surf A Physicochem Eng Asp 348:28–34

    Article  CAS  Google Scholar 

  30. Meng FY, Zhou LG, Shi S-Q, Yang R (2003) Carbon 41:2023–2025

    Article  CAS  Google Scholar 

  31. Yildirim T, Ciraci S (2005) Phys Rev Lett 94:175501–175504

    Article  CAS  Google Scholar 

  32. Gayathri V, Geetha R (2007) Adsorption 13:53–59

    Article  CAS  Google Scholar 

  33. Koopmans T (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  34. Pearson RG (1963) J Am Chem Soc 85:3533–3543

    Article  CAS  Google Scholar 

  35. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  36. Pearson RG (2005) J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742

    Article  CAS  Google Scholar 

  38. Mulliken RS (1934) J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  39. Wang R, Zhang D, Sun W, Han Z, Liu C (2007) J Mol Struc THEOCHEM 806:93–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Research Affairs, Mahasarakham University, and the Postgraduate Education and Research in Chemistry (PERCH) program, Thailand, for financial support of this research and the facility provided by Supramolecular Chemistry Research Unit and Department of Chemistry, Faculty of Science, Mahasarakham University. The Thailand Research Fund for financial support (Grant No. MRG5180141) to BW is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banchob Wanno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabtimsai, C., Keawwangchai, S., Nunthaboot, N. et al. Density functional investigation of hydrogen gas adsorption on Fe−doped pristine and Stone−Wales defected single−walled carbon nanotubes. J Mol Model 18, 3941–3949 (2012). https://doi.org/10.1007/s00894-012-1388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1388-1

Keywords

Navigation