Skip to main content

Advertisement

Log in

Cooperativity effects in linear formaldehyde oligomers using density functional theory calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work reports hydrogen bonding interaction in linear formaldehyde oligomers using density functional theory method. Many-body analysis technique has been used to study the various interactions in these oligomers and to obtain % contributions from individual many-body energy terms to the binding energies of these oligomers. Co-operativity effects are studied using different indicators viz. hydrogen bond strength, inter- and intramolecular distances, dissociation energy, dipole co-operativity, energy per hydrogen bond, excess energy and non-additive energy. All these indicators show strong positive hydrogen bond co-operativity in linear formaldehyde oligomers. The dipole moment changes from 2.51 D in monomer to 20.92 D in formaldehyde heptamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chaudhari A, Lee SL (2005) Int J Quantum Chem 102:106–111

    Article  CAS  Google Scholar 

  2. Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163–170

    Article  CAS  Google Scholar 

  3. Wormer PES, van der Avorid A (2000) Chem Rev 100:4109–4143

    Article  CAS  Google Scholar 

  4. Grabowski S (ed) (2006) Hydrogen bonding: new insights. Springer, Berlin

  5. Karpfen A, Scheiner S (ed) (1997) Molecular interaction. Wiley, New York

  6. King BF, Weinhold F (1995) J Chem Phys 103:333–347

    Article  CAS  Google Scholar 

  7. Sum AK, Sandler SI (2000) J Phys Chem A 104:1121–1129

    Article  CAS  Google Scholar 

  8. Ludwig R, Reis O, Winter R, Weinhold F, Farrar TC (1998) J Phys Chem B 102:9312

    Article  CAS  Google Scholar 

  9. Nadya K, Lillyrose P, del Rio E, Dannenberg JJ (2001) J Am Chem Soc 123:4348

    Article  Google Scholar 

  10. Parra RD, Bulusu S, Zeng XC (2003) J Chem Phys 118:3499–3509

    Article  CAS  Google Scholar 

  11. Masunov A, Dannenberg JJ (2000) J Phys Chem B 104:806–810

    Article  CAS  Google Scholar 

  12. Parra RD, Furukawa M, Gong B, Zeng XC (2001) J Chem Phys 115:6030–6035

    Article  CAS  Google Scholar 

  13. Solimannejad M, Nassirinia N, Amani S (2011) Struct Chem 22:865–871

    Article  CAS  Google Scholar 

  14. Alkorta I, Blanco F, Deya PM, Elguero J, Estarellas C, Frontera A, Quinonero D (2010) Theor Chem Acc 126:1–14

    Article  CAS  Google Scholar 

  15. Kar T, Scheiner S (2004) J Phys Chem A 108:9161–9168

    Article  CAS  Google Scholar 

  16. Shivaglal MC, Singh S (1989) Chem Phys Lett 164:63–67

    Article  CAS  Google Scholar 

  17. Alkorta I, Blanco F (2009) Elguero J 20:63–71

    CAS  Google Scholar 

  18. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  19. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2011) J Mol Model. doi:10.1007/s00894-011-1263-5

  20. Kuring IJ, Szczesniak MM, Scheiner S (1986) J Phys Chem 90:4253–4258

    Article  Google Scholar 

  21. Kuring IJ, Szczesniak MM, Scheiner S (1987) J Phys Chem 87:2214–2224

    Article  Google Scholar 

  22. Latajka Z, Scheiner S (1988) Chem Phys 122:413–430

    Article  CAS  Google Scholar 

  23. Chalasinski G, Cybulski SM, Szczesniak MM, Scheiner S (1989) J Chem Phys 91:7048–7056

    Article  CAS  Google Scholar 

  24. Chalasinski G, Szczesniak MM, Cieplak P, Scheiner S (1991) J Chem Phys 94:2873–2883

    Article  CAS  Google Scholar 

  25. DuPre DB, Yappert MC (2002) J Phys Chem A 106:567–574

    Article  CAS  Google Scholar 

  26. Chen C, Liu MH, Wu LS (2003) J Mol Struct (THEOCHEM) 630:187–204

    Article  CAS  Google Scholar 

  27. Suh SB, Kim JC, Choi YC, Yun S, Kim KS (2003) J Am Chem Soc 126:2186–2193

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB et al. (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  29. Xantheas SS (1994) J Chem Phys 100:7523–7534

    Article  CAS  Google Scholar 

  30. Xantheas SS (2000) Chem Phys 258:225–231

    Article  CAS  Google Scholar 

  31. Xantheas SS, Dunning TH Jr (1993) J Chem Phys 99:8774–8792

    Article  CAS  Google Scholar 

  32. Kulkarni A, Ganesh V, Gadre SR (2004) J Chem Phys 121:5043–5050

    Article  CAS  Google Scholar 

  33. Chaudhari A, Lee SL (2004) J Chem Phys 120:7464–7470

    Article  CAS  Google Scholar 

  34. Chaudhari A, Sahu PK, Lee SL (2004) J Chem Phys 120:170–174

    Article  CAS  Google Scholar 

  35. Boo DW (2001) Bull Korean Chem Soc 22:693–698

    CAS  Google Scholar 

  36. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  37. Valiron P, Mayer I (1997) Chem Phys Lett 275:46–55

    Article  CAS  Google Scholar 

  38. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  39. Andersson PM, Uvdal P (2005) J Phys Chem A 109:2937–2941

    Article  CAS  Google Scholar 

  40. Bai J, Su CR, Parra RD, Zeng XC, Tanaka H, Koga K, Li JM (2003) J Chem Phys 118:3913–3916

    Article  CAS  Google Scholar 

  41. Nowek A, Leszczński J (1996) J Chem Phys 104:1441–1451

    Article  CAS  Google Scholar 

  42. Duncan JL (1974) Mol Phys 28:1177–1191

    Article  CAS  Google Scholar 

  43. Kondo K, Oka T (1960) J Phys Soc Jpn 109:9674–9680

    Google Scholar 

  44. Fabricant B, Krieger D, Mautner JS (1977) J Chem Phys 67:1576–1586

    Article  CAS  Google Scholar 

  45. Wohar MM, Jagodzinski PW (1991) J Mol Spectrosc 148:13–19

    Article  CAS  Google Scholar 

  46. Harding LB, Ermler WC (1985) J Comput Chem 6:13–27

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Chaudhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshmukh, V., Lee, SL. & Chaudhari, A. Cooperativity effects in linear formaldehyde oligomers using density functional theory calculations. J Mol Model 18, 3723–3729 (2012). https://doi.org/10.1007/s00894-012-1380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1380-9

Keywords

Navigation