Skip to main content
Log in

Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Exploring and evaluating the potential applications of two-dimensional graphene is an increasingly hot topic in graphene research. In this paper, by studying the adsorption of NO, N2O, and NO2 on pristine and silicon (Si)-doped graphene with density functional theory methods, we evaluated the possibility of using Si-doped graphene as a candidate to detect or reduce harmful nitrogen oxides. The results indicate that, while adsorption of the three molecules on pristine graphene is very weak, Si-doping enhances the interaction of these molecules with graphene sheet in various ways: (1) two NO molecules can be adsorbed on Si-doped graphene in a paired arrangement, while up to four NO2 molecules attach to the doped graphene with an average adsorption energy of −0.329 eV; (2) the N2O molecule can be reduced easily to the N2 molecule, leaving an O-atom on the Si-doped graphene. Moreover, we find that adsorption of NO and NO2 leads to large changes in the electronic properties of Si-doped graphene. On the basis of these results, Si-doped graphene can be expected to be a good sensor for NO and NO2 detection, as well as a metal-free catalyst for N2O reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The adsorption energy of n adsorbate on Si-doped graphene is defined as: E ads = [ E total (nadsorbate-Si-doped graphene)] - n[ E total (adsorbate)] - [ E total Si-doped graphene)]/n, where E total is the total energy of the studied system and n is the number of the adsorbate

  2. see footnote 1

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Geim AK (2009) Science 324:1530–1534

    Article  CAS  Google Scholar 

  3. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Edn 48:7752–7777

    Article  CAS  Google Scholar 

  4. Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A (2009) J Mater Chem 19:2457–2469

    Article  CAS  Google Scholar 

  5. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162

    Article  Google Scholar 

  6. Taghioskoui M (2009) Mater Today 12:34–37

    Article  CAS  Google Scholar 

  7. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  8. Schedin F, Geim AK, Moeozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  9. Barbolina II, Novoselov KS, Morozov SV, Dubonos SV, Missous M, Volkov AO, Christian DA, Grigorieva IV, Geim AK (2006) Appl Phys Lett 88:013901

    Article  Google Scholar 

  10. Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  11. Loh KP, Bao Q, Ang PK, Yang J (2010) J Mater Chem 20:2277–2289

    Article  CAS  Google Scholar 

  12. Terronesa M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H (2010) Nanotoday 5:351–372

    CAS  Google Scholar 

  13. Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T (2010) Adv Phys 59:261–482

    Article  CAS  Google Scholar 

  14. Choi W, Lahiri L, Seelaboyina R, Kang YS (2010) Crit Rev Solid State Mater Sci 35:52–71

    Article  CAS  Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV (2005) Firsov AA. Nature 438:197–200

    Article  CAS  Google Scholar 

  16. Zhang Y, Tan Y, Stormer HL, Kim P (2005) Nature 438:201–204

    Article  CAS  Google Scholar 

  17. Danneau R, Wu F, Craciun MF, Russo S, Tomi MY, Salmilehto J, Morpurgo AF, Hakonen P (2008) J Phys Rev Lett 100:196802

    Article  CAS  Google Scholar 

  18. Wehling TO, Noveselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI (2008) Nano Lett 8:173–177

    Article  CAS  Google Scholar 

  19. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) J Am Chem Soc 125:11329–11333

    Article  CAS  Google Scholar 

  20. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev B 77:125416

    Article  Google Scholar 

  21. Dai J, Giannozzi P, Yuan J (2009) Surf Sci 603:3234–3238

    Article  CAS  Google Scholar 

  22. Johnson JJ, Behnam A, Pearton SJ, Ural A (2010) Adv Mater 22:4877–4880

    Article  CAS  Google Scholar 

  23. Kaniyoor A, Jafri RI, Arokiadoss T, Ramaprabhu S (2009) Nanoscale 1:382–386

    Article  CAS  Google Scholar 

  24. Dai J, Yuan J, Giannozzi P (2009) Appl Phys Lett 95:232105

    Article  Google Scholar 

  25. Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Nanotechnology 20:185504

    Article  Google Scholar 

  26. Ao ZM, Yang J, Li S, Jiang Q (2008) Chem Phys Lett 461:276–279

    Article  CAS  Google Scholar 

  27. Francesco FAP, Kelly FJ, Holgate ST (2005) Air Quality Guidelines Global Update; World Health Organization

  28. Trogler WC (1999) Coord Chem Rev 187:303–327

    Article  CAS  Google Scholar 

  29. Duce R et al (2008) Science 320:893–897

    Article  CAS  Google Scholar 

  30. Ravishankara AR, Daniel JS, Portmann RW (2009) Science 326:123–125

    Article  CAS  Google Scholar 

  31. Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) J Phys Chem B 108:19912–19916

    Article  CAS  Google Scholar 

  32. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  33. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  35. Wu X, Zeng XC (2009) Nano Lett 9:250–256

    Article  CAS  Google Scholar 

  36. Jiang D, Sumpter BG, Dai S (2006) J Phys Chem B 110:23628–23632

    Article  CAS  Google Scholar 

  37. Choi WI, Jhi SH, Kim K, Kim YH (2010) Phys Rev B 81:085441

    Article  Google Scholar 

  38. Manna AK, Pati SK (2009) Chem Asian J 4:855–860

    Article  CAS  Google Scholar 

  39. Dai J, Yuan J, Giannozzi P (2010) Phys Rev B 81:165414

    Article  Google Scholar 

  40. Suggs K, Reuven D, Wang XQ (2011) J Phys Chem C 115:3313–3317

    Article  CAS  Google Scholar 

  41. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  42. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  43. Davidson ER, Chakravorty S (1992) Theor Chim Acta 83:319–330

    Article  CAS  Google Scholar 

  44. Meister J, Schwarz WHE (1994) J Phys Chem 98:8245–8252

    Article  CAS  Google Scholar 

  45. Wiberg KB, Rablen PR (1993) J Comput Chem 14:1504–1518

    Article  CAS  Google Scholar 

  46. Verstraete M, Gonze X (2003) Phys Rev B 68:195123

    Article  Google Scholar 

  47. Wu XJ, Zeng XC (2006) J Chem Phys 125:044711

    Article  Google Scholar 

  48. Bultinck P, Alsenoy VC, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126:144111

    Article  Google Scholar 

  49. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  50. Inada Y, Orita H (2008) J Comput Chem 29:225–232

    Article  CAS  Google Scholar 

  51. Cobian M, Iniguez J (2008) J Phys Condens Matter 20:285212

    Article  Google Scholar 

  52. Ataca C, Aktürk E, Ciraci S, Ustunel H (2008) Appl Phys Lett 93:043123

    Article  Google Scholar 

  53. de Andres PL, Ramírez R, Vergés JA (2008) Phys Rev B 77:045403

    Article  Google Scholar 

  54. Cabria I, López MJ, Alonso JA (2005) J Chem Phys 123:204721

    Article  CAS  Google Scholar 

  55. Okamoto Y, Miyamoto Y (2001) J Phys Chem B 105:3470–3474

    Article  CAS  Google Scholar 

  56. Wu XJ, Gao Y, Zeng XC (2008) J Phys Chem C 112:8458–8463

    Article  CAS  Google Scholar 

  57. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  58. Cruz-Silva E, López-Urías F, Muñoz-Sandoval E, Sumpter BG, Terrones H, Charlier J-C, Meunier V, Terrones M (2009) ACS Nano 3:1913–1921

    Article  CAS  Google Scholar 

  59. Pietrzyk P, Zasada F, Piskorz W, Kotarba A, Sojka Z (2007) Catal Today 119:219–227

    Article  CAS  Google Scholar 

  60. Pietrzyk P, Gil B, Sojka Z (2007) Catal Today 126:103–111

    Article  CAS  Google Scholar 

  61. Hadjiivanov K (2000) Catal Rev Sci Eng 42:71–144

    Article  CAS  Google Scholar 

  62. Dean JA (1992) Lange’s Chemistry Handbook, 15th edn. New York, McGraw-Hill

    Google Scholar 

  63. Jhi SH, Louie SG, Cohen ML (2000) Phys Rev Lett 85:1710–1713

    Article  CAS  Google Scholar 

  64. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support of this research by the Key Program Projects of the National Natural Science Foundation of China (No 21031001), the National Natural Science Foundation of China (No 20971040), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No 708029), the Key Program Projects of the Province Natural Science Foundation of Heilongjiang Province (No. ZJG0602-01), the National Basic Research Priority Program (No. 2007CB914104), the Committee of Education of Heilongjiang Province (No. 11541095), the Scientific Research Foundation for Doctor of Harbin Normal University (08XKYL38), and Heilong Jiang Postdoctoral Funds for scientific research initiation. The authors would like to express their gratitude to the reviewers for raising invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Xiang Zhao.

Supplementary material available

Below is the link to the electronic supplementary material.

Figure S1

Spin densities of a the adsorbed Si-doped graphene by an individual NO molecule, and b the free NO molecule. The isovalue is 0.025 au. (DOC 106 kb)

Figure S2

Highest occupied molecular orbitals (HOMOs) of Si-doped graphene after adsorbing one NO molecule. The isovalue is 0.025 au. (DOC 61 kb)

Figure S3

a Spin densities, and b HOMOs of the adsorbed Si-doped graphene by an individual NO2 molecule. The isovalue is 0.025 au. (DOC 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Gao, B., Zhao, JX. et al. Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction. J Mol Model 18, 2043–2054 (2012). https://doi.org/10.1007/s00894-011-1226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1226-x

Keywords

Navigation