Skip to main content
Log in

Exploration of the binding of proton pump inhibitors to human P450 2C9 based on docking and molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human P450 protein CYP2C9 is one of the major drug-metabolizing isomers, contributing to the oxidation of 16% of the drugs currently in clinical use. To examine the interaction mechanisms between CYP2C9 and proton pump inhibitions (PPIs), we used molecular docking and molecular dynamics (MD) simulation methods to investigate the conformations and interactions around the binding sites of PPIs/CYPP2C9. Results from molecular docking and MD simulations demonstrate that nine PPIs adopt two different conformations (extended and U-bend structures) at the binding sites and position themselves far above the heme of 2C9. The presence of PPIs changes the secondary structures and residue flexibilities of 2C9. Interestingly, at the binding sites of all PPI–CYP2C9 complexes except for Lan/CYP2C9, there are hydrogen-bonding networks made of PPIs, water molecules, and some residues of 2C9. Moreover, there are strong hydrophobic interactions at all binding sites for PPIs/2C9, which indicate that electrostatic interactions and hydrophobic interactions appear to be important for stabilizing the binding sites of most PPIs/2C9. However, in the case of Lan/2C9, the hydrophobic interactions are more important than the electrostatic interactions for stabilizing the binding site. In addition, an interesting conformational conversion from extended to U-bend structures was observed for pantoprazole, which is attributed to an H-bond interaction in the binding pocket, an internal π–π stacking interaction, and an internal electrostatic interaction of pantoprazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polgár T, Menyhárd DK, Keserű GM (2007) Effective virtual screening protocol for CYP2C9 ligands using a screening site constructed from flurbiprofen and S-warfarin pockets. J Comput Aided Mol Des 21:539–548

    Google Scholar 

  2. Seifert A, Tatzel S, Schmid RD, Pleiss J (2006) Multiple molecular dynamics simulations of human P450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins Struct Funct Bioinf 64:147–155

    Google Scholar 

  3. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2278

    Article  CAS  Google Scholar 

  4. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    Article  CAS  Google Scholar 

  5. Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56:945–993

    Article  CAS  Google Scholar 

  6. Zhao YH, Sun L, Muralidhara BK, Kumar S, White MA, Stout DC, Halpert JR (2007) Structural and thermodynamic consequences of 1-(4-chlorophenyl)imidazole binding to cytochrome P450 2B4. Biochemistry 46:11559–11567

    Google Scholar 

  7. Ahlström MM, Ridderström M, Zamora I (2007) CYP2C9 structure–metabolism relationships: substrates, inhibitors, and metabolites. J Med Chem 50:5382–5391

    Google Scholar 

  8. Bibi Z (2008) Role of cytochrome P450 in drug interactions. Nutr Metab 5:27–36

    Article  Google Scholar 

  9. Li WH, Tang Y, Liu H, Cheng J, Zhu WL, Jiang HL (2008) Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Proteins 71:938–949

    Article  CAS  Google Scholar 

  10. Transon T, Leemann T, Vogt N, Dayer P (1995) In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 58:412–417

    Article  CAS  Google Scholar 

  11. Poli-Scaife S, Attias R, Dansette PM, Mansuy D (1997) The substrate binding site of human liver cytochrome P450 2C9: an NMR study. Biochemistry 36:12672–12682

    Article  CAS  Google Scholar 

  12. Hamman MA, Thompson GA, Hall SD (1997) Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol 54:33–41

    Article  CAS  Google Scholar 

  13. Miners JO, Coulter S, Tukey RH, Veronese ME, Birkett DJ (1996) Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem Pharmacol 51:1003–1008

    Google Scholar 

  14. Tracy TS, Marra C, Wrighton SA, Gonzalez FJ, Korzekwa KR (1996) Studies of flurbiprofen 4′-hydroxylation: additional evidence suggesting the sole involvement of cytochrome P450 2C9. Biochem Pharmacol 52:1305–1309

    Article  CAS  Google Scholar 

  15. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, Gelboin HV, Gonzalez FJ, Trager WF (1992) Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-450 2C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 5:54–59

    Google Scholar 

  16. Thijssen HH, Flinois JP, Beaune PH (2000) Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 28:1284–1290

    CAS  Google Scholar 

  17. Yamazaki H, Shimada T (1997) Progesterone and testosterone hydroxylation by cytochrome P450 2C19, 2C9, and 3A4 in human liver microsome. Arch Biochem Biophys 346:161–169

    Article  CAS  Google Scholar 

  18. Williams PA, Cosme J, Ward A, Angove HC, Matak VD, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468

    Article  CAS  Google Scholar 

  19. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-Å resolution. J Biol Chem 279:35630–35637

    Google Scholar 

  20. Arimoto R (2006) Computational models for predicting interactions with cytochrome P450 enzyme. Curr Top Med Chem 6:1609–1618

    Article  CAS  Google Scholar 

  21. Ahlström MM, Zamora I (2008) Characterization of type II ligands in CYP2C9 and CYP3A4. J Med Chem 51:1755–1763

    Article  Google Scholar 

  22. Ballard SA, Lodola A, Tarbit MH (1988) A comparative study of 1-substituted imidazole and 1,2,4-triazole antifungal compounds as inhibitors of testosterone hydroxylations catalysed by mouse hepatic musomal cytochromes P-450. Biochem Pharmacol 37:4643–4651

    Google Scholar 

  23. Zamora I, Afzelius L, Cruciani G (2003) Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J Med Chem 46:2313–2324

    Article  CAS  Google Scholar 

  24. Yao Y, Han WW, Zhou YH, Li ZS, Li Q, Chen XY, Zhong DF (2009) The metabolism of CYP2C9 and CYP2C19 for gliclazide by homology modeling and docking study. Eur J Med Chem 44:854–861

    Article  CAS  Google Scholar 

  25. Accelrys Inc. (1999) Profile-3D user guide. Accelrys Inc., San Diego

  26. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  27. Yasuo K, Yamaotsu N, Gouda H, Tsujishita H, Hirono S (2009) Structure-based CoMFA as a predictive model—CYP2C9 inhibitors as a test case. J Chem Inf Model 49:853–864

    Google Scholar 

  28. Totah RA, Rettie AE (2005) Cytochrome P450 2C8: substrates, inhibitors pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 77:341–352

    Article  CAS  Google Scholar 

  29. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1997) The protein data bank. A computer-based archival file for macro-molecular structures. Eur J Biochem 80:319–324

    Google Scholar 

  30. Ishizaki T, Horai Y (1999) Review article: cytochrome P450 and the metabolism of proton pump inhibitors—emphasis on rabeprazole. Aliment Pharmacol Ther 13:27–36

    Google Scholar 

  31. Meyer UA (1996) Interaction of proton pump inhibitors with cytochromes P450: consequences for drug interactions. Yale J Biol Med 69:203–209

    CAS  Google Scholar 

  32. Nakamura M, Matsui H, Serizawa H, Tsuchimoto K (2007) Lansoprazole novel effector sites revealed by autoradiography: relation to Helicobacter pylori, colon, esophagus and others. J Clin Biochem Nutr 41:154–157

    Google Scholar 

  33. Li XQ, Andersson TB, Ahlström M, Weidolf L (2004) Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos 32:821–827

    Article  CAS  Google Scholar 

  34. Velík J, Baliharová V, Gremmels JF, Bull S, Lamka J, Skálová L (2004) Benzimidazole drugs and modulation of biotransformation enzymes. Res Vet Sci 76:95–108

    Google Scholar 

  35. Afzelius L, Zamora I, Masimirembwa CM, Karlén A, Andersson TB, Mecucci S, Baroni M, Cruciani G (2004) Conformer- and alignment-independent model for predicting structurally diverse competitive CYP2C9 inhibitors. J Med Chem 47:907–914

    Article  CAS  Google Scholar 

  36. Masubuchi N, Li AP, Okazaki O (1998) An evaluation of the cytochrome P450 induction potential of pantoprazole in primary human hepatocytes. Chem Biol Interact 114:1–13

    Article  CAS  Google Scholar 

  37. Armstrong S, Cozza KL, Benedek D (2007) Med-psych drug–drug interactions update. Psychosomatics 48:79–85

    Google Scholar 

  38. Ko JW, Sukhova N, Thacker D, Chen P, Flockhart DA (1997) Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos 25:853–862

    CAS  Google Scholar 

  39. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906

    Article  CAS  Google Scholar 

  40. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, rev. A.02. Gaussian Inc., Wallingford

  42. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithnm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  43. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  44. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  45. van der Spoel D, van Buuren AR, Peter Tieleman D, Berendsen HJC (1996) Molecular dynamics simulations of peptides from BPTI: a closer look at amide–aromatic interactions. J Biomol NMR 8:229–238

    Google Scholar 

  46. Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water–protein interactions. Biopolymers 23:1513–1518

    Google Scholar 

  47. van Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput-Aided Mol Des 10:255–262

    Article  Google Scholar 

  48. Fuhrmans M, Sanders BP, Marrink SJ, de Vries AH (2010) Effects of bundling on the properties of the SPC water mode. Theor Chem Acc 125:335–344

    Article  CAS  Google Scholar 

  49. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  50. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  51. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  52. Afzelius L, Raubacher F, Karlén A, Jørgensen FS, Andersson TB, Masimirembwa CM, Zamora I (2004) Structural analysis of CYP2C9 and CYP2C5 and an evaluation of commonly used molecular modeling techniques. Drug Metab Dispos 32:1218–1229

    CAS  Google Scholar 

  53. Gajendrarao P, Krishnamoorthy N, Sakkiah S, Lazar P, Lee KW (2010) Molecular modeling study on orphan human protein CYP4A22 for identification of potential ligand binding site. J Mol Graph Model 28:524–532

    Article  CAS  Google Scholar 

  54. Sinha N, Smith-Gill SJ (2002) Electrostatics in protein binding and function. Curr Protein Pept Sc 3:601–614

    Article  CAS  Google Scholar 

  55. Weiner PK, Langridge R, Blaney JM, Schaefer R, Kollman PA (1982) Electrostatic potential molecular surfaces. Proc Nat Acad Sci USA 79:3754–3758

    Article  CAS  Google Scholar 

  56. Ekroos M, Sjögren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Nat Acad Sci USA 103:13682–13687

    Article  CAS  Google Scholar 

  57. Cupp-Vickery JR, Garcia C, Hofacre A, McGee-Estrada K (2001) Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. J Mol Biol 311:101–110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Science Foundation of China (nos. 20236010, 20246002, 20376032, 20706029, and 20876073), Jiangsu Science and Technology Department of China (no. BK2008372), and Nanjing University of Technology of China (no. ZK200803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolei Zhu or Xiaohua Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. SI-1

Overall fold of CYP2C9, coloured from blue at the N-terminus to green, to yellow, to red at the C-terminus. The heme group is depicted as a ball mode in the center of the molecule, flanked by helices I and L. The figure was produced using Pymol software (DOC 370 kb)

Fig. SI-2

ai The binding modes of CYP2C9 docked with lansoprazole (a), pantoprazole (b), rabeprazole (c), omeprazole (d), esomeprazole (e), tenatoprazole (f), leminoprazole (g), ilaprazole (h), and disuprazole (i). Carbon atoms of PPIs and the surrounding residues that are within 4 Å of the PPIs are colored in orange and green, respectively. Dotted black lines represent polar interactions or hydrogen bonds (DOC 1368 kb)

Fig. SI-3

ag Snapshots of the hydrogen-bonding networks in the binding sites of PPIs/CYP2C9 at 10 ns for Pan/2C9 (a), Ome/2C9 (b), Ten/2C9 (c), Rab/2C9 (d), Lem/2C9 (e), Eso/2C9 (f) and Ila/2C9 (g). Carbon atoms of acid residues and PPIs are colored in green and slate blue, respectively. Each dotted line (black) indicates a hydrogen bond (DOC 1059 kb)

Fig. SI-4

a Two-dimensional schematic representation of hydrogen-bond and hydrophobic interactions. Dashed lines represent hydrogen bonds and spiked residues from hydrophobic interactions with Lan. b Interatomic distances associated with hydrogen-bond interactions of Lan in the binding site of CY2C9 versus MD simulation time. To enhance the visual clarity, the curve of L1 is shifted upward by 0.1 nm. c Center of mass distances associated with hydrophobic interactions of Lan in the binding site of CYP2C9 versus MD simulation time. The curves of D2, D4, D5 and D6 are shifted upward by 0.05, 0.10, 0.40 and 0.45 nm, respectively (DOC 209 kb)

Fig. SI-5

ad Average RMSFs of free CYP2C9 and PPIs/CYP2C9. a RMSFs for 2C9/Ome (red), 2C9/Lan (green). b RMSFs for 2C9/Lem (deep green), 2C9/Rab (orange) and 2C9/Dis (purple). c RMSFs for 2C9/Eso (deep green) and 2C9/Ila (pink). d RMSFs for 2C9/Pan (dark cyan) and 2C9/Ten (light magenta). For comparison, we have added the RMSF of free CYP2C9 (blue) to a–d. Black lines represent flexible loops and residues (DOC 107 kb)

Fig. SI-6

ai Interactions of PPIs (lansoprazole, pantoprazole, omeprazole, esomeprazole, rabeprazole, ilaprazole, leminoprazole, tenatoprazole, and disuprazole: a–i, respectively) with CYP2C9. Surface representation of CYP2C9, colored on the basis of electrostatic potentials (−65.207k B T/e to 65.207k B T/e), and PPIs. Surface representation of CYP2C9 shows the PPIs (a–i) bound at the binding site of CYP2C9 (shown as yellow sticks). The dashed lines (black) represent hydrogen bonds (DOC 2432 kb)

Fig. SI-7

ai Final conformations of the binding sites of PPIs/CYP2C9 after 10 ns of MD simulation for Pan/2C9 (a), Ome/2C9 (b), Ten/2C9 (c), Rab/2C9 (d), Lem/2C9 (e), Eso/2C9 (f), Ila/2C9 (g), Dis/2C9 (h), and Lan/2C9 (i), respectively. Carbon atoms of residues of CYP2C9 and PPIs are colored green and salmon pink, respectively. Each dotted line (black) indicates a hydrogen bond. The residues surrounding the binding sites are represented by secondary structures (DOC 3981 kb)

Fig. Si-8

Snapshots of the binding pocket of 2C9/Pan over time. The surface of the protein is rendered in wheat brown. Pantoprazole and residues are shown as sticks, and their carbon atoms are represented in light brown and green, respectively (DOC 2979 kb)

Table SI-1

Binding energies and docking energies of PPIs/CYP2C9, as obtained from molecular docking (DOC 31 kb)

Table SI-2

The retention times for H-bonds between water molecules and disuprazole or residues in the binding pocket during the MD simulation (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, R., Li, J., Cao, X. et al. Exploration of the binding of proton pump inhibitors to human P450 2C9 based on docking and molecular dynamics simulation. J Mol Model 17, 1941–1951 (2011). https://doi.org/10.1007/s00894-010-0903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0903-5

Keywords

Navigation