Skip to main content
Log in

Molecular dynamics of the “hydrophobic patch” that immobilizes hydrophobin protein HFBII on silicon

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The experimentally-observed stable, electrically-conducting interface formed between hydrophobin protein HFBII and silicon provides a model system for the Bio/ICT interfaces required for bionanoelectronics. The present work used molecular dynamics (MD) computer simulations to investigate the atom-scale details of the assembly and structure of the HFBII/silicon interface, using models on the order of 40,000 atoms to compute energy profiles for the full protein interacting with a bare Si(111) substrate in aqueous solution. Five nanoseconds of free, equilibrated dynamics were performed for six models with initial protein:silicon separations ranging from 1.2 to 0.2 nanometers in steps of 0.2 nm. Three of the models formed extensive protein:silicon van der Waals’s interfacial contacts. The model with 0.2 nm starting separation serves as an illustrative example of the dynamic interface created, whereby hydrophobic patch residues cycle between flat and more protruding patch conformations that favor respectively close inter-patch and close patch-surface contacts, with protein:surface separations cycling between 0.2 and 0.4 nm over the 5 ns of dynamics. Analysis of residue-based binding energies at the interface reveal three leucines Leu19, Leu21 and Leu63, together with isoleucine Ile22 and alanine Ala61, as the primary drivers towards adhesion on bare silicon, providing the atom-scale details of HFBII’s hydrophobic patch which in turn provides leads for the engineering of more tightly-coupled interfaces.

Atom-scale computer simulations reveal the structure, dynamics and energetics of hydrophobin protein HFBII immobilisation on bare silicon, a prototype for ordered organic/inorganic interfaces in future bionanoelectronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TC, Pitkeathly M, Radford SE (1997) Nature 386:259–262

    Article  CAS  Google Scholar 

  2. Colombo G, Soto P, Gazit E (2007) Trends Biotechnol 25:211–218

    Article  CAS  Google Scholar 

  3. Whitesides GM, Lipomi DJ (2009) Faraday Discuss 143:373–384

    Article  CAS  Google Scholar 

  4. Nosonovsky M, Bhushan B (2008) Adv Func Mater 18:843–855

    Article  CAS  Google Scholar 

  5. Pum D, Neubauer A, Györvary E, Sára M, Sleytr UB (2000) Nanotechnol 11:100–107

    Article  CAS  Google Scholar 

  6. Talbot NJ (1999) Nature 398:295–296

    Article  CAS  Google Scholar 

  7. Wösten HA, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JG (1999) Curr Biol 9:85–88

    Article  Google Scholar 

  8. Hakanpaa J, Paananen A, Askolin S, Nakari-Setala T, Parkkinen T, Penttila M, Linder MB, Rouvinen J (2004) J Biol Chem 279:534–539

    Article  Google Scholar 

  9. Szilvay GR, Paananen A, Laurikainen K, Vuorimaa E, Lemmetyinen H, Peltonen J, Linder MB (2007) Biochemistry 46:2345–2354

    Article  CAS  Google Scholar 

  10. Kivioja JM, Kurppa K, Kainlauri M, Linder MB, Ahopelto J (2009) Appl Phys Lett 94:183901

    Article  Google Scholar 

  11. Zhao ZX, Qiao MQ, Yin F, Shao B, Wu BY, Wang YY, Wang XS, Qin X, Li S, Yu L, Chen Q (2007) Biosens Bioelectron 22:3021–3027

    Article  CAS  Google Scholar 

  12. Laaksonen P, Kainlauri M, Laaksonen T, Shchepetov A, Jiang H, Ahopelto J, Linder M (2010) Angew Chem Int Ed 49:4946–4949

    Article  CAS  Google Scholar 

  13. Lin Z, Strother T, Cai W, Cao X, Smith LM, Hamers RJ (2002) Langmuir 18:788–796

    Article  CAS  Google Scholar 

  14. Streifer JA, Kim H, Nichols BM, Hamers RJ (2005) Nanotechnology 16:1868–1873

    Article  CAS  Google Scholar 

  15. Nishiyama K, Hoshino T (2007) Appl Phys Lett 90:213901

    Article  Google Scholar 

  16. Ziegler KJ (2005) Trends Biotechnol 23:440–428

    Article  CAS  Google Scholar 

  17. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  18. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  19. Lopes PEM, Murashov V, Tazi M, Demchuk E, MacKerell AD Jr (2006) J Phys Chem B 110:2782–2792

    Article  CAS  Google Scholar 

  20. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  21. Fan H, Wang X, Zhu J, Robillard GT, Mark AE (2006) Proteins 64:863–873

    Article  CAS  Google Scholar 

  22. Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) J Mol Biol 382:708–720

    Article  CAS  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  24. Iori F, Di Felice R, Molinari E, Corni S (2009) J Comput Chem 30:1465–1476

    Article  CAS  Google Scholar 

  25. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1170

    Article  CAS  Google Scholar 

  26. Huskens J (2006) Curr Opin Chem Bio 10:537–543

    Article  CAS  Google Scholar 

  27. Kivlehan F, Lefoix M, Moynihan HA, Thompson D, Ogurtsov VI, Herzog G, Arrigan DWM (2010) Electrochim Acta 55:3348–3354

    Article  CAS  Google Scholar 

  28. Chan G, Mooney DJ (2008) Trends Biotechnol 26:382–392

    Article  CAS  Google Scholar 

  29. Hearn EM, Patel DK, van der Berg B (2008) Proc Natl Acad Sci USA 105:8601–8606

    Article  CAS  Google Scholar 

  30. Valo HK, Laaksonen PH, Peltonen LJ, Linder MB, Hirvonen JT, Laaksonen TJ (2010) ACS Nano 4:1750–1758

    Article  CAS  Google Scholar 

  31. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nature Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  32. Hiratsuka Y, Miyata M, Tada T, Uyeda TQP (2006) Proc Natl Acad Sci USA 103:13618–13623

    Article  CAS  Google Scholar 

  33. Carter EA (2008) Science 321:800–803

    Article  CAS  Google Scholar 

  34. Klein MK, Shinoda W (2008) Science 321:798–800

    Article  CAS  Google Scholar 

  35. Ander M, Luzhkov VB, Aqvist J (2008) Biophys J 94:820–831

    Article  CAS  Google Scholar 

  36. Meinhold L, Smith JC, Kitao A, Zewail AH (2007) Proc Nat Acad Sci 104:17261–17265

    Article  CAS  Google Scholar 

  37. Thompson D (2007) Langmuir 23:8441–8451

    Article  CAS  Google Scholar 

  38. Thompson D, Miller C, McCarthy FO (2008) Biochemistry 47:10333–10344

    Article  CAS  Google Scholar 

  39. Gannon G, Greer JC, Larsson JA, Thompson D (2010) ACS Nano 4:921–932

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge support for this research from Science Foundation Ireland (SFI) under the UREKA Programme and also Enterprise Ireland Innovation Partnership project ORD3D. We acknowledge SFI for computing resources at Tyndall National Institute and SFI/ Higher Education Authority for computing time at the Irish Centre for High-End Computing (ICHEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Thompson.

Electronic supplementary material

Supporting information

Internal hydrophobic pocket structures for each model to accompany the radial distribution function RDF plots in Fig. 2, residue-based components for hydrophobic patch immobilization on silicon to support the full patch binding energies and interface structures in Figs. 3 and 4, together with a movie showing the dynamics of HFBII/Si(111) interface formation to accompany Figs. 4 and 5.

ESM 1

(DOC 3.16 MB)

Supplementary Fig. S1

(GIF 51.7 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldovan, C., Thompson, D. Molecular dynamics of the “hydrophobic patch” that immobilizes hydrophobin protein HFBII on silicon. J Mol Model 17, 2227–2235 (2011). https://doi.org/10.1007/s00894-010-0887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0887-1

Keywords

Navigation