Skip to main content
Log in

Density functional study of oxygen vacancy formation and spin density distribution in octahedral ceria nanoparticles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report plane wave basis density functional theory (DFT) calculations of the oxygen vacancies formation energy in nanocrystalline CeO 2-x in comparison with corresponding results for bulk and (111) CeO2 surface. Effects of strong electronic correlation of Ce4f states are taken into account through the use of an effective on-site Coulomb repulsive interaction within DFT+U approach. Different combinations of exchange-correlation functionals and corresponding U values reported in the literature are tested and the obtained results compared with experimental data. We found that both absolute values and trends in oxygen vacancy formation energy depend on the value of U and associated with degree of localization of Ce4f states. Effect of oxygen vacancy and geometry optimization method on spatial spin distribution in model ceria nanoparticles is also discussed.

Spin density in Ce44O80 nanocrystal reflects redistribution of localized f-electorns after the oxygen vacancy is introduced: all Ce cations at corner sites (except one) increase their magnetic moment to 0.97μB, while the edge opposite to the facet with vacancy has two Ce atoms with magnetic moment equal to 0.57μB, sharing f-electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285–298

    Article  CAS  Google Scholar 

  2. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  3. Chen JP, Patil S, Seal S, McGinnis JF (2006) Nat Nanotechnol 1:142–150

    Article  CAS  Google Scholar 

  4. Duclos SJ, Vohra YK, Ruoff AL, Jayaraman A, Espinosa GP (1988) Phys Rev B 38:7755–7758

    Article  CAS  Google Scholar 

  5. Barnighausen H, Schiller G (1985) J Less-Common Met 110:385–390

    Article  Google Scholar 

  6. Kang ZC, Eyring L (1998) Oxides. Trans Tech, Clausthal Zellerfe, pp 301–358

    Google Scholar 

  7. Heinemann C, Cornehl HH, Schroder D, Dolg M, Schwarz H (1996) Inorg Chem 35:2463–2475

    Article  CAS  Google Scholar 

  8. Seal S, Shukla S (2002) In: Baraton M, Nalwa HS (eds) Functionalization and surface treatment of nanoparticles. Academic, San Diego, CA

    Google Scholar 

  9. Herman GS (1999) Surf Sci 437:207–214

    Article  CAS  Google Scholar 

  10. Suzuki T, Kosacki I, Anderson HU, Colomban P (2001) J Am Ceram Soc 84:2007–2014

    Article  CAS  Google Scholar 

  11. Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) J Phys Chem B 104:11110–11116

    Article  CAS  Google Scholar 

  12. Conesa JC (1995) Surf Sci 339:337–352

    Article  CAS  Google Scholar 

  13. Tsunekawa S, Sahara R, Kawazoe Y, Ishikawa K (1999) Appl Surf Sci 152:53–56

    Article  CAS  Google Scholar 

  14. Deshpande S, Patil S, Kuchibhatla SVNT, Seal S (2005) Appl Phys Lett 87:133113-1–133113-3

    Article  Google Scholar 

  15. Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185–187

    Article  CAS  Google Scholar 

  16. Chiang YM, Lavik EB, Blom DA (1997) Nanostructured Mater 9:633–642

    Article  CAS  Google Scholar 

  17. Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1997) J Electroceram 1:7–14

    Article  CAS  Google Scholar 

  18. Skorodumova NV, Ahuja R, Simak SI, Abrikosov IA, Johansson B, Lundqvist BI (2001) Phys Rev B 64:115108

    Article  Google Scholar 

  19. Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Phys Rev B 71:041102

    Article  Google Scholar 

  20. Kresse G, Blaha P, Da Silva JLF, Ganduglia-Pirovano MV (2005) Phys Rev B 72:237101

    Article  Google Scholar 

  21. Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Phys Rev B 72:237102

    Article  Google Scholar 

  22. Loschen C, Carrasco J, Neyman KM, Illas F (2007) Phys Rev B 75:035115

    Article  Google Scholar 

  23. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943–954

    Article  CAS  Google Scholar 

  24. Anisimov VI, Korotin MA, Zaanen J, Andersen OK (1992) Phys Rev Lett 68:345–348

    Article  CAS  Google Scholar 

  25. Castleton CWM, Kullgren J, Hermansson K (2007) J Chem Phys 127:244704

    Article  CAS  Google Scholar 

  26. Pederson MR, Heaton RA, Lin CC (1985) J Chem Phys 82:2688–2699

    Article  CAS  Google Scholar 

  27. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  28. Hay PJ, Martin RL, Uddin J, Scuseria GE (2006) J Chem Phys 125:034712

    Article  Google Scholar 

  29. Da Silva JLF, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G (2007) Phys Rev B 75:045110-045121

    Google Scholar 

  30. Andersson DA, Simak SI, Johansson B, Abrikosov IA, Skorodumova NV (2007) Phys Rev B 75:035106-035109

    Article  Google Scholar 

  31. Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105

    Article  Google Scholar 

  32. Fabris S, Vicario G, Balducci G, de Gironcoli S, Baroni S (2005) J Phys Chem B 109:22860–22867

    Article  CAS  Google Scholar 

  33. Jiang Y, Adams JB, van Schilfgaarde M (2005) J Chem Phys 123:1949189

    Google Scholar 

  34. Loschen C, Bromley ST, Neyman KM, Illas F (2007) J Phys Chem C 111:10142–10145

    Article  CAS  Google Scholar 

  35. Loschen C, Migani A, Bromley ST, Illas F, Neyman KM (2008) Phys Chem Chem Phys 10:5730–5738

    Article  CAS  Google Scholar 

  36. Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217–229

    Article  CAS  Google Scholar 

  37. Dudarev SL, Botton GA, Savrasov SY, Szotek Z, Temmerman WM, Sutton AP (1998) Phys Status Solidi A 166:429–443

    Article  CAS  Google Scholar 

  38. Jiang Y, Adams JB, van Schilfgaarde M, Sharma R, Crozier PA (2005) Appl Phys Lett 87:2084324

    Google Scholar 

  39. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  41. Blochl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  42. Skorodumova NV, Baudin M, Hermansson K (2004) Phys Rev B 69:075401

    Article  Google Scholar 

  43. Yang SW, Gao L (2006) J Am Chem Soc 128:9330–9331

    Article  CAS  Google Scholar 

  44. Chen MY, Zu XT, Xiang X, Zhang HL (2007) Physica B 389:263–268

    Article  CAS  Google Scholar 

  45. Tsunekawa S, Fukuda T, Kasuya A (2000) Surf Sci 457:L437–L440

    Article  CAS  Google Scholar 

  46. Dutta P, Pal S, Seehra MS, Shi Y, Eyring EM, Ernst RD (2006) Chem Mater 18:5144–5146

    Article  CAS  Google Scholar 

  47. Yang ZX, Woo TK, Baudin M, Hermansson K (2004) J Chem Phys 120:7741–7749

    Article  CAS  Google Scholar 

  48. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89:166601

    Article  CAS  Google Scholar 

  49. Tuller HL, Nowick AS (1979) J Electrochem Soc 126:209–217

    Article  CAS  Google Scholar 

  50. Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Phys Rev Lett 102:026101–026104

    Article  Google Scholar 

  51. Li H-Y, Wang H-F, Gong X-Q, Guo Y-L, Guo Y, Lu G, Hu P (2009) Phys Rev B 79:193401–193404

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported in part by NSF (NIRT project CBET-0708172). The calculations were performed using (1) Stokes HPCC facility at UCF Institute for Simulation and Training (IST), (2) Bethe SMP server at UCF NanoScience Technology Center (NSTC), (3) the National Energy Research Scientific Computing Center (NERSC) , which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artëm E. Masunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inerbaev, T.M., Seal, S. & Masunov, A.E. Density functional study of oxygen vacancy formation and spin density distribution in octahedral ceria nanoparticles. J Mol Model 16, 1617–1623 (2010). https://doi.org/10.1007/s00894-010-0671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0671-2

Keywords

Navigation