Skip to main content
Log in

In silico approach to cisplatin toxicity. Quantum chemical studies on platinum(II)–cysteine systems

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The behaviour of cisplatin in serum, and the drastic differences between the properties of this drug and its trans-isomer were the main motivations for this work. In a search for model “thiol–platin(II)” interactions, the first steps of the following reaction systems were evaluated: (1) cisplatin–thiomethanol; (2) transplatin–thiomethanol; (3) cisplatin–cysteine; and (4) transplatin–cysteine. In each case, calculations for the associative mode of reactions were performed. The electronic structure of these molecular systems was studied at the non-empirical all-electron level using density functional theory (DFT) within the Huzinaga and WTBS basis sets including polarisation Gaussian functions and full geometry optimisation. B3LYP or EPBO density functionals were applied throughout. The calculated molecular electrostatic potentials are presented graphically. Assuming that electrostatic effects are dominant, cisplatin should interact more strongly with the sulfur atom of CH3S and deprotonated CYS-S than transplatin. This fact has been documented in the supermolecule model of the relevant interaction energies in both gas phase as well as within the solvent polarisable continuum model. The opposite relationship was observed when we compared values of energy differences between products and substrates for both isomers. The data obtained here could be applied to search for correlation between the biological activity of platinum complexes and their properties as estimated by various physico-chemical and in silico methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenberg B (1973) Naturwissenschaften 60:399–406

    Article  CAS  Google Scholar 

  2. O’Dwyer PJ, Stevenson JP (1999) In: Lippert B (ed) Cisplatin. Chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim, pp 31–72

  3. Reedijk J, Teuben JM (1999) In: Lippert B (ed) Cisplatin. Chemistry and biochemistry of a leading anticancer Drug. Wiley-VCH, Weinheim, pp 339–362

  4. Hannemann J, Baumann K (1990) Arch Toxicol 64:393–400

    Article  CAS  Google Scholar 

  5. Gelasco A, Lippard SJ (1999) Top Biol Inorg Chem 1:1–43

    CAS  Google Scholar 

  6. Lempers ELM, Reedijk J (1991) Adv Inorg Chem 37:175–217

    Article  CAS  Google Scholar 

  7. Berners-Price SJ, Kuchel PW (1990) J Inorg Biochem 38:305–326

    Article  CAS  Google Scholar 

  8. Holler E (1993) In: Keppler BK (ed) Metal complexes in cancer chemotherapy. VCH, Weinheim, pp 37–71

  9. Corden BJ (1987) Inorg Chim Acta 137:125–130

    Article  CAS  Google Scholar 

  10. Hambley TW (1997) Coord Chem Rev 166:181–223

    Article  CAS  Google Scholar 

  11. Fichtinger-Schepman AMJ, Van der Veer JL, den Hartog JHJ, Lohman PHM, Reedijk J (1985) Biochemistry 24:707–713

    Article  CAS  Google Scholar 

  12. Wang K, Lu J, Li R (1996) Coord Chem Rev 151:53–88

    Article  CAS  Google Scholar 

  13. Hanigan MH, Devarajan P (2003) Cancer Ther 1:47–61

    Google Scholar 

  14. Wang X, Guo Z (2007) Anticancer Agents Med Chem 7:19–34

    Article  Google Scholar 

  15. Heudi O, Cailleux A, Allain PJ (1998) Inorg Biochem 71:61–69

    Article  CAS  Google Scholar 

  16. Bose RN, Moghaddes S, Weaver EL, Cox EH (1995) Inorg Chem 34:5878–5883

    Article  CAS  Google Scholar 

  17. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307–320

    Article  CAS  Google Scholar 

  18. Daley-Yates PT, McBrien DCA (1982) Chem-Biol Interact 40:325–334

    Article  CAS  Google Scholar 

  19. Sugiyama S, Hayakawa M, Kato T, Hanaki Y, Shimizu K, Ozawa T (1989) Biochem Biophys Res Commun 159:1121–1127

    Article  CAS  Google Scholar 

  20. Zhang JG, Lindup WE (1994) Biochem Pharmacol 47:1127–1135

    Article  CAS  Google Scholar 

  21. Xin Yao, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334:115–124

    Google Scholar 

  22. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6871

    Article  CAS  Google Scholar 

  23. Lepre CL, Lippard SJ (1990) In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 4. Springer, Berlin, pp 9–38

  24. Bloemink MJ, Reedijk J (1996) Metal Ions Biol Sys 32:641–685

    CAS  Google Scholar 

  25. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  CAS  Google Scholar 

  26. Reedijk J, Lempers ELM (1991) Adv Inorg Chem 37:175–217

    Article  Google Scholar 

  27. Brabec V, Kasparkova J Drug Resistance Updates (2002) 5:147–161

  28. Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196

    Article  CAS  Google Scholar 

  29. Lau JK-C, Deubel DV (2005) Chem Eur J 11:2849–2855

    Article  CAS  Google Scholar 

  30. Deubel DV (2002) J Am Chem Soc 124:5834–5842

    Article  CAS  Google Scholar 

  31. Deubel DV (2004) J Am Chem Soc 126:5999–6004

    Article  CAS  Google Scholar 

  32. Cleare MJ, Hoeschele JD (1973) Bioinorg Chem 2:187–210

    Article  CAS  Google Scholar 

  33. Dedon PC, Borch RF (1987) Biochem Pharmacol 36:1955–1964

    Article  CAS  Google Scholar 

  34. Huzinaga S (1984) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

    Google Scholar 

  35. WTBS Basis Set: http://bse.pn.gov/bse.portal

  36. http://OpenMOPAC.net

  37. GAUSSIAN-03, (2003) Rev. D-01 Gaussian Inc., Pittsburgh PA 2003

  38. MOLEKEL-5.3: http://www.cscs.ch/index.php?

  39. Burda JV, Gu J (2008) J Inorg Biochem 102:53–62

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their warmest thanks to the referees for valuable comments that improved the quality of this paper. The numerical calculations were performed in part at Wrocław Centre for Networking and Supercomputing. The financial support of Wrocław University of Technology is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Chojnacki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chojnacki, H., Kuduk-Jaworska, J., Jaroszewicz, I. et al. In silico approach to cisplatin toxicity. Quantum chemical studies on platinum(II)–cysteine systems. J Mol Model 15, 659–664 (2009). https://doi.org/10.1007/s00894-009-0469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0469-2

Keywords

Navigation