Skip to main content
Log in

The post-SCF quantum chemistry characteristics of inter- and intra-strand stacking interactions in d(CpG) and d(GpC) steps found in B-DNA, A-DNA and Z-DNA crystals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The energies of intra- and inter-strand stacking interactions in model d(GpC) and d(CpG) two-base-pair steps were estimated by MP2/aug-cc-pVDZ single point calculations corrected for basis superposition errors. The stacked two-nucleobase pairs were constructed using experimental values of base pair and base step parameters taken from Nucleic Acid Database (http://ndbserver.rutgers.edu/). Three distinct polymorphic forms were analysed, namely A-, B- and Z-DNA. The applied methodology enables statistical analysis of structural and energetic diversities. The structural relationships between polymorphic forms are quite complex and depend on the sequence of pairs. The variability of parameters such as shift and tilt is almost the same irrespective of the polymorphic form and sequence of steps analysed. In contrast, shift and twist distributions easily discriminate all three polymorphic forms of DNA. Interestingly, despite significant structural diversities, the energies of the most frequent energy ranges are comparable irrespective of the polymorphic form and base sequence. There was observed compensation of inter- and intra-strand interactions, especially for d(GpC) and d(CpG) steps found in A- and B-DNA. Thus, among many other roles, these pairs act as a kind of energetic buffer, balancing the double helix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saenger W (1988) Principles of nucleic acid structures. Springer, Berlin

    Google Scholar 

  2. Bloomfield VA, Crothers DM, Tinoco I (1999) Nucleic acids: structures, properties and functions. University Science Books, Sausalito, CA

    Google Scholar 

  3. Hobza P, Šponer J (1999) Chem Rev 99:3247–3276. doi:10.1021/cr9800255

    Article  CAS  Google Scholar 

  4. Šponer J, Riley KE, Hobza P (2008) Phys Chem Chem Phys 10:2595–2610. doi:10.1039/b719370j

    Google Scholar 

  5. Müller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–167. doi:10.1021/cr9900331

    Article  CAS  Google Scholar 

  6. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) Chem Rev 106:302–323. doi:10.1021/cr0404794

    Article  CAS  Google Scholar 

  7. Šponer J, Florian J, Ng H, Šponer J, Špackowá N (2000) Nucleic Acids Res 24:4893–4902

    Google Scholar 

  8. Hobza P, Šponer J, Polášek M (1995) J Am Chem Soc 117:792–798. doi:10.1021/ja00107a023

    Article  CAS  Google Scholar 

  9. Dąbkowska I, Jurečka P, Hobza P (2005) J Chem Phys 122:204322. doi:10.1063/1.1906205

    Article  CAS  Google Scholar 

  10. Dąbkowska I, Gonzalez HV, Jurečka P, Hobza P (2005) J Phys Chem A 109:1131–1136. doi:10.1021/jp046738a

    Article  CAS  Google Scholar 

  11. Jurečka P, Hobza P (2003) J Am Chem Soc 125:15608–15613. doi:10.1021/ja036611j

    Article  CAS  Google Scholar 

  12. Cysewski P, Czyżnikowska Ż (2007) J Heterocycl Chem 44:765–773

    Article  CAS  Google Scholar 

  13. Cysewski P, Czyżnikowska Ż, Zaleśny R, Czeleń P (2008) Phys Chem Chem Phys 10:2665–2672. doi:10.1039/b718635e

    Article  CAS  Google Scholar 

  14. Cysewski P, Czyżnikowska Ż (2005) J Mol Struct THEOCHEM 757:29–36. doi:10.1016/j.theochem.2005.06.014

    Article  CAS  Google Scholar 

  15. Sharma R, McNamara JP, Raju RK, Vincent MA, Hillier IH, Morgado CA (2008) Phys Chem Chem Phys 10:2767–2774. doi:10.1039/b719764k

    Article  CAS  Google Scholar 

  16. Hobza P, Selzle HL, Schlag EW (1994) J Am Chem Soc 116:3500–3506. doi:10.1021/ja00087a041

    Article  CAS  Google Scholar 

  17. Šponer J, Hobza P (1997) Chem Phys Lett 267:263–270. doi:10.1016/S0009-2614(97)00118-8

    Article  Google Scholar 

  18. Šponer J, Gabb HA, Leszczynski J, Hobza P (1997) Biophys J 73:76–87

    Article  Google Scholar 

  19. Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) Nucleic Acids Biophys J 63:751–759

    CAS  Google Scholar 

  20. Cysewski P (2008) J Mol Struct THEOCHEM 865:36–43. doi:10.1016/j.theochem.2008.06.019

    Article  CAS  Google Scholar 

  21. Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu XJ, Neidle S, Shakked Z, Sklenar H, Suzuki M, Tung CS, Westhof E, Wolberger C, Berman HM (2001) J Mol Biol 313:229–237. doi:10.1006/jmbi.2001.4987

    Article  CAS  Google Scholar 

  22. Boys SF, Bernardi F (1970) Mol Phys 19:553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  23. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) MOLPRO, Revision 2006.0, Patch(2006.1), Cardiff, UK

  24. Hill JG, Platts JA (2008) Phys Chem Chem Phys 10:2785–2791. doi:10.1039/b718691f

    Article  CAS  Google Scholar 

  25. Šponer J, Jurečka P Hobza P (2006) In: Šponer J, Lankaš F (eds) Computational studies of RNA and DNA. Springer, Dordrecht, pp 343–388

    Google Scholar 

  26. Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986) Proc Natl Acad Sci USA 83:9373–9377. doi:10.1073/pnas.83.24.9373

    Article  CAS  Google Scholar 

  27. Turner DH, Sugimoto N, Kierzek R, Dreikert SD (1987) J Am Chem Soc 109:3783–3785. doi:10.1021/ja00246a047

    Article  CAS  Google Scholar 

  28. Santalucia J (1998) Proc Natl Acad Sci USA 95:1460–1465. doi:10.1073/pnas.95.4.1460

    Article  CAS  Google Scholar 

  29. Šponer J, Jurečka P, Marchan I, Luque FJ, Orozco M, Hobza P (2001) Chem Eur J 12:2854–2865

    Google Scholar 

  30. Meneni S, Shell SM, Gao L, Jurečka P, Šponer J, Lee W, Zou Y, Chiarelli MP, Cho BP (2007) Biochemistry 46:11263–11278. doi:10.1021/bi700858s

    Article  CAS  Google Scholar 

  31. Florian J, Šponer J, Warshel A (1999) J Phys Chem B 103:884–892. doi:10.1021/jp983699s

    Article  CAS  Google Scholar 

  32. Ghosh A, Bansal M (2003) A glossary of DNA structures from A to Z. Acta Crystallogr D Biol Crystallogr 59:620–626. doi:10.1107/S0907444903003251

    Article  CAS  Google Scholar 

  33. Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopka ML (1982) The anatomy of A-, B-, and Z-DNA. Science 216:475–485. doi:10.1126/science.7071593

    Article  CAS  Google Scholar 

  34. Sinden RR (1994) DNA structure and function. Academic, New York, pp 179–216

  35. Basham B, Schroth GP, Ho PS (1995) Proc Natl Acad Sci USA 92:6464–6468. doi:10.1073/pnas.92.14.6464

    Article  CAS  Google Scholar 

  36. Leslie AG, Arnott S, Chandrasekaran R, Ratliff RL (1980) J Mol Biol 143:49–72. doi:10.1016/0022-2836(80)90124-2

    Article  CAS  Google Scholar 

  37. Rich A, Zhang S (2003) Nat Rev Genet 4:566–572. doi:10.1038/nrg1115

    Article  CAS  Google Scholar 

  38. Egli M, Gessner RV (1995) Proc Natl Acad Sci USA 92:180–184. doi:10.1073/pnas.92.1.180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of Ms. A. Cieślińska is greatly appreciated. The results were partly obtained based on computational grants from PCSS (Poznań Supercomputing and Networking Centre, Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Cysewski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

List of the NDB and PDB file names of oligo-nucleotides used in this paper for description of interactions in model d(GpC) and d(CpG) steps. NR Nominal resolution in Å (DOC 148 kb)

Table S2

The intermolecular interaction energies (IIE, in kcal/mol) of CG and GC stacked pairs found in B-DNA. The NDB file names were used along with the pair position in the oligo-nucleotide sequence. Notation for interactions within d(CpG) steps is as follows: ΔE12 5′-C/G-3′ in stand I; ΔE13 5′-C|C-5′, ΔE24 3′-G|G-3′ and ΔE34 5′-C/G-3′ in stand II. By analogy, the IIE in d(GpC) steps are denoted as follows: ΔE12 5′-G/C-3′ in stand II, ΔE13 5′-G|G-5′, ΔE24 3′-C|C-3′ and ΔE34 5′-G/C-3′ in stand II. The energies of hydrogen bonded pairs are symbolised as ΔE14 for 5′-G-C-3′ and ΔE23 3′-G-C-5′, respectively (DOC 407 kb).

Table S3

Intermolecular interaction energies (IIE in kcal/mol) in model d(CpG) and d(GpC) found in A-DNA. Notation as in Table S2 (DOC 290 kb).

Table S4

Intermolecular interaction energies (IIE in kcal/mol) in model d(CpG) and d(GpC) steps found in Z-DNA. Notation as in Table S2 (DOC 168 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cysewski, P. The post-SCF quantum chemistry characteristics of inter- and intra-strand stacking interactions in d(CpG) and d(GpC) steps found in B-DNA, A-DNA and Z-DNA crystals. J Mol Model 15, 597–606 (2009). https://doi.org/10.1007/s00894-008-0378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0378-9

Keywords

Navigation