Skip to main content
Log in

Theoretical investigation of direct amination of β-ketoesters catalyzed by copper(II)-bisoxazoline(BOX)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism of the direct amination of β-keto esters catalyzed by copper(II)-bisoxazoline has been studied by means of density functional theory of B3LYP method. The computational results support the present mechanism, which involves (i) the generation of the enol from β-keto esters, which coordinates to copper(II)-bisoxazoline. The coordination step appears to be fast, exothermic, and irreversible. (ii) The formation of the σ(N-C) bond via a six-membered ring transition state after azo dicarboxylate coordination with the chiral catalyst. This step is chirality-control step. (iii) Intramolecular hydrogen migration generates a catalyst-product complex, which can finally yield product. The hydrogen shift is the rate-determining step, which affords the experimentally observed (R)-product. The stereochemical predictions have been rationalized in terms of steric repulsions, showing good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Williams RM (1989) Synthesis of optically active a-amino acids. Pergamon, Oxford

    Google Scholar 

  2. Williams RM, Hendrix JA (1992) Chem Rev 92:889–917

    Article  CAS  Google Scholar 

  3. Arend M (1999) Angew Chem 111:3047–3049; (1999) Angew Chem Int Ed 38:2873–2874

    Google Scholar 

  4. Yet L (2001) Angew Chem 113:900–902

    Article  Google Scholar 

  5. Duthaler RO (1994) Tetrahedron 50:1539–1650

    Article  CAS  Google Scholar 

  6. Bergmeier SC (2000) Tetrahedron 56:2561–2576

    Article  CAS  Google Scholar 

  7. Sigman MS, Jacobsen EN (1998) J Am Chem Soc 120:5315–5316

    Article  CAS  Google Scholar 

  8. Sigman MS, Vachal P, Jacobsen EN (2000) Angew Chem 112:1336–1338; (2000) Angew Chem Int Ed 39:1279–1281

    Google Scholar 

  9. Sigman MS, Jacobsen EN (1998) J Am Chem Soc 120:4901–4902

    Article  CAS  Google Scholar 

  10. Krueger CA, Kuntz KW, Dzierba CD, Wirschun WG, Gleason JD, Snapper ML, Hoveyda AH (1999) J Am Chem Soc 121:4284–4285

    Article  CAS  Google Scholar 

  11. Takamura M, Hamashima Y, Usuda H, Kanai M, Shibasaki M (2000) Angew Chem 112:1716–1718; (2000) Angew Chem Int Ed 39:1650–1652

    Google Scholar 

  12. Corey EJ, Grogan MJ (1999) Org Lett 1:157–160

    Article  CAS  Google Scholar 

  13. Ishitani H, Komiyama S, Kobayashi S (1998) Angew Chem 110:3369–3372; (1998) Angew Chem Int Ed 37:3186–3188

    Google Scholar 

  14. Ishitani H, Komiyama S, Hasegawa Y, Kobayashi S (2000) J Am Chem Soc 122:762–766

    Article  CAS  Google Scholar 

  15. Juhl K, Jrogensen KA (2002) J Am Chem Soc 124:2420–2421

    Article  CAS  Google Scholar 

  16. Marigo M, Juhl K, Jrogensen KA (2003) Angew Chem Int Ed 42:1367–1369

    Article  CAS  Google Scholar 

  17. Ghosh AK, Mathivanan P, Cappiello J (1998) Tetrahedron: Asymmetry 9:1–45

    Article  CAS  Google Scholar 

  18. Jørgensen KA, Johannsen M, Yao S, Audrain H, Thurhauge J (1999) Acc Chem Res 32:605–613

    Article  Google Scholar 

  19. Evans DA, Rovis T, Johnson JS (1999) Pure Appl Chem Res 71:1407–1415

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2159

    Article  CAS  Google Scholar 

  23. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  24. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  25. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  26. Hariharan PJ, Pople JA (1973) Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  28. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO version 3.1

  29. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41–62

    Article  Google Scholar 

  30. Charpenter JE (1987) Dissertation, Univ Wisconsin, Madison, WI

  31. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  32. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  33. Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  34. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  35. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  36. Weinhold F, Carpenter JE (1988) Plenum p 227–236

  37. Biegler-König F, Schönbohm J, Derdau R, Bayles D, Bader RFW (2000) AIM 2000 version 1

  38. Miertus S, Tomasi J (1982) Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  39. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Könler VJKF, Stegmann R, Veldkamp A, Frenking GA (1993) Chem Phy Let 208:237–240

    Article  Google Scholar 

  40. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187–196

    Article  CAS  Google Scholar 

  41. Gorelsky SI, AOMix: Program for Molecular Orbital Analysis; York University: Toronto, Canada, 1997; http://www.sf-chem.net/

  42. Gorelsky SI, Ghosh S, Solomon EI (2006) J Am Chem Soc 128:278–290

    Article  CAS  Google Scholar 

  43. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  44. El-Dissouky A, Refaat LS (1987) Inorg Chem Acta 87:213–222

    Article  Google Scholar 

  45. Fraile JM, Garcia JI, Martinez-Merino V, Mayoral JA, Salvatella L (2001) J Am Chem 123:7616–7625

    Article  CAS  Google Scholar 

  46. Evans DA, Miller SJ, lectka T, von Matt P (1999) J Am Chem Soc 121:7559–7573

    Article  CAS  Google Scholar 

  47. Audrain H, Thorhauge J, Hazell RG, Jørgensen KA (2000) J Org Chem 65:4487–4497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Shen, W., Zhang, J. et al. Theoretical investigation of direct amination of β-ketoesters catalyzed by copper(II)-bisoxazoline(BOX). J Mol Model 14, 237–247 (2008). https://doi.org/10.1007/s00894-007-0266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0266-8

Keywords

Navigation